TABLE OF CONTENTS

FOREWORD ... iii

ENERGY SYSTEMS ANALYSIS AND MANAGEMENT TASK FORCE iv

NOTICE TO USERS OF THIS PUBLICATION ... v

TABLE OF CONTENTS ... vii

CHAPTER 1 ENERGY CONSERVATION MANAGEMENT

1.1 ENERGY USE INFLUENCE FACTORS .. 1.1
1.2 BUILDING ENVELOPE ... 1.1
1.3 HUMAN COMFORT NEEDS ... 1.4
1.4 ENERGY MANAGEMENT (OPERATION) ... 1.4
1.5 INITIAL COST VERSUS OPERATING COSTS .. 1.5
1.6 EVALUATION ... 1.5
1.7 EXISTING BUILDINGS .. 1.6
1.8 ENERGY CONSERVATION CHECKLIST .. 1.7
1.9 SYSTEM MODIFICATIONS ... 1.8
1.10 STRUCTURE MODIFICATIONS .. 1.8
1.11 NEW BUILDINGS ... 1.9
1.12 THE DESIGN PROCESS .. 1.9
1.13 ENERGY EFFICIENT DESIGN ... 1.9
1.14 HVAC SYSTEM EVALUATION .. 1.10

CHAPTER 2 AIR SYSTEMS

2.1 AIR SYSTEM CLASSIFICATIONS .. 2.1
2.2 AIR SYSTEM BENEFITS .. 2.1
2.3 AIR SYSTEM DESIGN BASICS ... 2.1
2.4 DUCT SYSTEM AIRFLOW ... 2.2
2.5 TYPES OF AIR SYSTEMS .. 2.3
2.6 HVAC SYSTEM VS BUILDING TYPE .. 2.9
2.7 ENERGY SAVING OPPORTUNITIES ... 2.10

CHAPTER 3 DOMESTIC WATER SYSTEMS

3.1 ENERGY ANALYSIS .. 3.1
3.2 REDUCED WATER TEMPERATURES .. 3.2
3.3 HOT WATER USAGE ... 3.2
3.4 SYSTEM THERMAL LOSSES ... 3.4
3.5 SOLAR DOMESTIC HOT WATER SYSTEMS 3.4

CHAPTER 4 ELECTRICAL SYSTEMS

4.1 LIGHTING ... 4.1
4.2 POWER ... 4.6
4.3 ELECTRICAL EQUIPMENT ... 4.8

CHAPTER 5 HVAC SYSTEM MAINTENANCE AND IAQ

5.1 IAQ ... 5.1
5.2 MAINTENANCE ... 5.2
Table of Contents

Chapter 6: The Energy Audit
- 6.1 Obtaining Initial Cooperation ... 6.1
- 6.2 Establishing an Energy Conservation Goal 6.1
- 6.3 The Building Survey .. 6.2
- 6.4 The Database ... 6.5
- 6.5 Using the Audit Data .. 6.7

Chapter 7: Energy Management, Maintenance, and Monitoring
- 7.1 Energy Conservation Monitoring .. 7.1
- 7.2 Verification Procedures .. 7.1

Chapter 8: Energy Estimating Procedures
- 8.1 Energy Estimating ... 8.1
- 8.2 Analysis of Energy Conservation Example 8.6

Chapter 9: Economics of Energy Reduction Projects
- 9.1 General .. 9.1
- 9.2 Computing Fuel Savings .. 9.2
- 9.3 Making a Simple Capital Investment Analysis 9.7
- 9.4 Life-Cycle Costing ... 9.10

Chapter 10: CFC Refrigerant Regulation
- 10.1 Background ... 10.1
- 10.2 Conclusions ... 10.4

Chapter 11: Energy Recovery Systems
- 11.1 Comfort-To-Comfort ... 11.1
- 11.2 Process-To-Comfort ... 11.2
- 11.3 Process-To-Process ... 11.2
- 11.4 Energy Recovery Equipment in General 11.3
- 11.5 Exchanger Configurations and Design 11.4
- 11.6 Types of Exchangers ... 11.5
- 11.7 Exchanger Characteristics ... 11.19
- 11.8 Exchanger Ratings and Standards ... 11.20
- 11.9 Mechanics of Heat Flow ... 11.22
- 11.10 Effectiveness .. 11.23
- 11.11 Exchanger Capacity Reduction ... 11.23
- 11.12 Thermal Transfer Fluids .. 11.24
- 11.13 Heat Transfer Media Evaluation .. 11.25
- 11.14 Equipment Design .. 11.25

Chapter 12: Evaporative Air Coolers
- 12.1 Direct Evaporative Cooling .. 12.1
- 12.2 Indirect Evaporative Cooling ... 12.1
- 12.3 Indirect/Direct Evaporative Cooling Systems 12.3

Chapter 13: Alternative Energy Systems
- 13.1 Solar Energy Systems ... 13.1
- 13.2 Hybrid Systems ... 13.4
- 13.3 Thermal Storage Systems ... 13.4
- 13.4 Geothermal .. 13.6
TABLES

Table 1–1 Factors Influencing Mechanical/Electrical System Load/Energy 1.2
Table 1–2 Building Envelope Costs as a Percentage of Total Building Costs 1.3
Table 1–2 Monthly Building or Plant Utility Usage ... 1.6
Table 3–1 Domestic Hot Water Usage ... 3.1
Table 3–2 Tank Loss .. 3.2
Table 4–1 Suggested Lighting Levels .. 4.2
Table 4–2 Relative Efficiency of Bulb Types ... 4.9
Table 4–3 Capacitor Correction for Power Factor .. 4.11
Table 6–1 Detailed Energy Audit Report Outline .. 6.4
Table 6–2 Audit Equipment Carried by the Retrofit Team 6.5
Table 6–3 Equipment Available to the Retrofit Team .. 6.6
Table 8–1 Average Monthly and Yearly Degree Days for Cities in the United States and Canada (Base 65°F) (Sample Table) 8.1
Table 8–2 Correction Factors for Outdoor Design Temperatures 8.2
Table 8–3 Unit Fuel Consumption Constants (Based on 0°F Outdoor Temperature, 70°F Indoor Temperature) .. 8.2
Table 8–4 Required [Energy Savings/Total Cost] Ratio for 5-year Payback Period. 8.8
Table 9–1 Annual Fuel Utilization Efficiency .. 9.3
Table 9–2a Heating Value of Common Fuels (U.S. Units) 9.3
Table 9–2b Heating Value of Common Fuels (Metric Units) 9.3
Table 9–3 Unit Fuel Consumption Constants (Based on 0°F Outdoor Temperature, 70°F Indoor Temperature) .. 9.10
Table 9–4 Capital Recovery Factors ... 9.11
Table 10–1 Comparison of the Montreal Protocol and United States Phaseout Schedules ... 10.1
Table 10–2 Common Refrigerants Used Today .. 10.3
Table 11–3 Frost Threshold Temperature, T1, for Various Exhaust Air Conditions 11.9
Table 11–1 Characteristics of Energy Recovery Devices 11.20
Table 11–2 Comparison of Air-to-Air Energy Recovery Systems 11.21
Table 13–1 Air Solar Heating Systems ... 13.2
Table 13–2 Liquid Solar Heating Systems .. 13.3
Table 15–1 Potential Costs to Consider in Investing in Energy Recovery Systems 15.1
Table 15–2 An Illustration That Payback Analysis Does Not Take Into Account Cash Flows Beyond the Payback Period ... 15.3
Table 15–3 An Illustration That the Undiscounted Payback Method Can Result in Inaccurate Methods ... 15.3
Table 15-4 Discounting Equations ... 15.5
Table 15-5 Illustrative Discounting of Representative Costs and Benefits 15.6
Table 15-6 Illustration of Net Present Value Method ... 15.8
Table 15-7 Kinds of Investment Decision Problems ... 15.14
Table 15-8 Net Benefits and Benefit/Cost Ration Rankings for a Set of Independence Projects ... 15.15
Table 15-9 6% Compound Interest Factors ... 15.16
Table 15-10 8% Compound Interest Factors ... 15.17
Table 15-11 10% Compound Interest Factors .. 15.18
Table 15-12 12% Compound Interest Factors .. 15.19
Table 15-13 15% Compound Interest Factors .. 15.20
Table 18-1 Thermodynamic Properties of Moist Air Standard Atmospheric Pressure (14.696 psi) ... 18.13
Table 18-2 Thermodynamic Properties of Moist Air (Metric) Standard Atmospheric Pressure (101.325 kPa) ... 18.15
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1–1</td>
<td>Major Components of Building Envelope</td>
<td>1.3</td>
</tr>
<tr>
<td>Figure 2–1</td>
<td>Constant Volume Single-Zone System</td>
<td>2.4</td>
</tr>
<tr>
<td>Figure 2–2</td>
<td>Constant Volume Reheat System</td>
<td>2.4</td>
</tr>
<tr>
<td>Figure 2–3</td>
<td>VAV System</td>
<td>2.5</td>
</tr>
<tr>
<td>Figure 2–4</td>
<td>VAV with Reheat System</td>
<td>2.6</td>
</tr>
<tr>
<td>Figure 2–5</td>
<td>VAV with Fan Powered Terminal Units</td>
<td>2.7</td>
</tr>
<tr>
<td>Figure 4–1</td>
<td>Power Factor Relationships</td>
<td>4.8</td>
</tr>
<tr>
<td>Figure 4–2</td>
<td>Totally Enclosed, Fan-Cooled Motor Replacement</td>
<td>4.10</td>
</tr>
<tr>
<td>Figure 5–1</td>
<td>Cooling Tower</td>
<td>5.2</td>
</tr>
<tr>
<td>Figure 5–2</td>
<td>Cooling Tower Intake Louvers</td>
<td>5.3</td>
</tr>
<tr>
<td>Figure 5–4</td>
<td>HVAC System</td>
<td>5.3</td>
</tr>
<tr>
<td>Figure 5–5</td>
<td>Cooling Coil/Fan Section</td>
<td>5.4</td>
</tr>
<tr>
<td>Figure 7–1</td>
<td>Electric Power Consumption</td>
<td>7.2</td>
</tr>
<tr>
<td>Figure 11–1</td>
<td>Comfort-to-Comfort Sensible</td>
<td>11.1</td>
</tr>
<tr>
<td>Figure 11–2</td>
<td>Comfort-to-Comfort Total Heat (Enthalpy) Transfer</td>
<td>11.1</td>
</tr>
<tr>
<td>Figure 11–3</td>
<td>Process-to-Comfort Energy Recovery System</td>
<td>11.3</td>
</tr>
<tr>
<td>Figure 11–4</td>
<td>Process-to-Process Energy Recovery System</td>
<td>11.3</td>
</tr>
<tr>
<td>Figure 11–5</td>
<td>Counterflow Airstreams</td>
<td>11.4</td>
</tr>
<tr>
<td>Figure 11–6</td>
<td>Parallel-Flow Airstreams</td>
<td>11.4</td>
</tr>
<tr>
<td>Figure 11–7</td>
<td>Cross-Flow Airstreams</td>
<td>11.4</td>
</tr>
<tr>
<td>Figure 11–8</td>
<td>Run-Around Coil Exchangers (Closed Heat Recovery Loop)</td>
<td>11.5</td>
</tr>
<tr>
<td>Figure 11–9</td>
<td>Plate Type Heat Exchanger</td>
<td>11.6</td>
</tr>
<tr>
<td>Figure 11–10</td>
<td>Pressure Drop vs. Flow (Fixed Plate Recovery Unit)</td>
<td>11.7</td>
</tr>
<tr>
<td>Figure 11–11</td>
<td>Plate Exchanger with Bypass Damper</td>
<td>11.9</td>
</tr>
<tr>
<td>Figure 11–12</td>
<td>Rotary Wheel Exchanger</td>
<td>11.9</td>
</tr>
<tr>
<td>Figure 11–13</td>
<td>Rotary Wheel Purge Section (Directionally Oriented Media)</td>
<td>11.11</td>
</tr>
<tr>
<td>Figure 11–14</td>
<td>Representative Pressure Drops for Rotary Wheel Exchangers</td>
<td>11.11</td>
</tr>
<tr>
<td>Figure 11–15</td>
<td>Typical Rotary Wheel</td>
<td>11.12</td>
</tr>
<tr>
<td>Figure 11–16</td>
<td>Effectiveness of Unequal Airflows</td>
<td>11.12</td>
</tr>
<tr>
<td>Figure 11–17</td>
<td>Bypass Dampers</td>
<td>11.13</td>
</tr>
<tr>
<td>Figure 11–18</td>
<td>Condensation and Frosting</td>
<td>11.13</td>
</tr>
<tr>
<td>Figure 18-13</td>
<td>Humidification and Dehumidification</td>
<td>18.16</td>
</tr>
<tr>
<td>Figure 18-14</td>
<td>Common Processes Shown on Psychrometric Chart</td>
<td>18.17</td>
</tr>
<tr>
<td>Figure 18-15</td>
<td>Cooling and Dehumidification</td>
<td>18.17</td>
</tr>
<tr>
<td>Figure 18-16</td>
<td>Heating and Humidification</td>
<td>18.18</td>
</tr>
<tr>
<td>Figure 18-17</td>
<td>Total Heat Content Change</td>
<td>18.18</td>
</tr>
<tr>
<td>Figure 18-18</td>
<td>Mixing Airstream on the Psychrometric Chart</td>
<td>18.21</td>
</tr>
</tbody>
</table>