TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iii</td>
</tr>
<tr>
<td>ROUND INDUSTRIAL DUCT CONSTRUCTION TASK FORCE</td>
<td>v</td>
</tr>
<tr>
<td>FORMER COMMITTEE MEMBERS AND OTHER CONTRIBUTORS</td>
<td>v</td>
</tr>
<tr>
<td>NOTICE TO USERS OF THIS PUBLICATION</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 SCOPE</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2 PURPOSE</td>
<td>1.1</td>
</tr>
<tr>
<td>1.3 DEVELOPMENT OF THE THIRD EDITION</td>
<td>1.1</td>
</tr>
<tr>
<td>1.4 INDUSTRIAL DUCT DESIGN AVENUES</td>
<td>1.2</td>
</tr>
<tr>
<td>1.5 HOW TO USE THIS MANUAL</td>
<td>1.2</td>
</tr>
<tr>
<td>1.6 MANUAL CONTENTS</td>
<td>1.3</td>
</tr>
<tr>
<td>CHAPTER 2 INDUSTRIAL DUCT APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>2.1 INTRODUCTION</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2 DEFINITION OF INDUSTRIAL DUCT</td>
<td>2.1</td>
</tr>
<tr>
<td>2.3 DUCT SYSTEM CLASSIFICATION</td>
<td>2.1</td>
</tr>
<tr>
<td>2.4 MATERIAL (PARTICULATE) CHARACTERISTICS AND CLASSES</td>
<td>2.2</td>
</tr>
<tr>
<td>CHAPTER 3 DUCT MATERIALS</td>
<td></td>
</tr>
<tr>
<td>3.1 INTRODUCTION</td>
<td>3.1</td>
</tr>
<tr>
<td>3.2 MATERIAL TYPES</td>
<td>3.1</td>
</tr>
<tr>
<td>3.3 HOT–ROLLED (CARBON) STEEL DATA</td>
<td>3.3</td>
</tr>
<tr>
<td>3.4 COLD–ROLLED (CARBON) STEEL DATA</td>
<td>3.4</td>
</tr>
<tr>
<td>3.5 GALVANIZED SHEET DATA</td>
<td>3.5</td>
</tr>
<tr>
<td>3.6 STAINLESS STEEL DATA</td>
<td>3.8</td>
</tr>
<tr>
<td>3.7 ALUMINUM DATA</td>
<td>3.12</td>
</tr>
<tr>
<td>3.8 MATERIAL PROPERTIES SUMMARY</td>
<td>3.14</td>
</tr>
<tr>
<td>3.9 CORROSION</td>
<td>3.16</td>
</tr>
<tr>
<td>CHAPTER 4 DESIGN CRITERIA</td>
<td></td>
</tr>
<tr>
<td>4.1 INTRODUCTION</td>
<td>4.1</td>
</tr>
<tr>
<td>4.2 GENERAL PROVISIONS</td>
<td>4.1</td>
</tr>
<tr>
<td>4.3 NOMENCLATURE</td>
<td>4.1</td>
</tr>
<tr>
<td>4.4 LOADS</td>
<td>4.3</td>
</tr>
<tr>
<td>4.5 LIMITS AND TOLERANCES</td>
<td>4.5</td>
</tr>
<tr>
<td>4.6 SERVICEABILITY AND DURABILITY</td>
<td>4.5</td>
</tr>
<tr>
<td>4.7 STRENGTH PROVISIONS – DESIGN BASIS</td>
<td>4.6</td>
</tr>
<tr>
<td>4.8 DESIGN OF CIRCUMFERENTIAL STIFFENERS</td>
<td>4.7</td>
</tr>
<tr>
<td>4.9 CONNECTIONS</td>
<td>4.8</td>
</tr>
<tr>
<td>4.10 HANGERS AND SUPPORTS</td>
<td>4.9</td>
</tr>
<tr>
<td>4.11 THERMAL EXPANSION</td>
<td>4.9</td>
</tr>
<tr>
<td>CHAPTER 5 COMMENTARY</td>
<td></td>
</tr>
<tr>
<td>5.1 INTRODUCTION</td>
<td>5.1</td>
</tr>
<tr>
<td>5.2 LOADS</td>
<td>5.1</td>
</tr>
<tr>
<td>5.3 LIMITS AND TOLERANCES</td>
<td>5.4</td>
</tr>
</tbody>
</table>
5.4 SERVICEABILITY AND DURABILITY .. 5.4
5.5 STRENGTH PROVISIONS DESIGN BASIS 5.5
5.6 DESIGN OF CIRCUMFERENTIAL STIFFENERS 5.8
5.7 CONNECTIONS ... 5.9
5.8 HANGERS AND SUPPORTS .. 5.11
5.9 THERMAL EXPANSION ... 5.11

CHAPTER 6 FLOW CHARTS

6.1 INTRODUCTION ... 6.1
6.2 COMMENTARY ... 6.1
6.3 ASSUMPTIONS ... 6.1
6.4 FLOW CHARTS ... 6.1

CHAPTER 7 ILLUSTRATIVE EXAMPLES

7.1 INTRODUCTION ... 7.1
7.2 COMMENTARY ... 7.1
7.3 NOMENCLATURE .. 7.1
EXAMPLE 7–1. COMPLEX LOAD COMBINATIONS 7.5
EXAMPLE 7–2. HIGH TEMPERATURE APPLICATION 7.13
EXAMPLE 7–3. MODERATE TEMPERATURE (ALUMINUM) APPLICATION 7.20
EXAMPLE 7–4. (CARBON STEEL) DUCT RISER IN AN OUTDOOR APPLICATION. 7.27

CHAPTER 8 DUCT SELECTION TABLES – CARBON AND GALVANIZED

8.1 INTRODUCTION ... 8.1
8.2 USE OF THE TABLES .. 8.3
EXAMPLE 8–1. MODIFYING PARTICULATE DENSITY TO ACCOUNT FOR INSULATION AND CLADDING GRAVITY LOADS .. 8.25
EXAMPLE 8–2. TYPICAL CARBON STEEL DUCT SELECTION 8.54
EXAMPLE 8–3. TYPICAL GALVANIZED STEEL DUCT SELECTION 8.54
EXAMPLE 8–4. TYPICAL GALVANIZED STEEL DUCT SELECTION FOR A POSTIVE PRESSURE APPLICATION 8.55

CHAPTER 9 DUCT SELECTION TABLES – STAINLESS STEEL

9.1 INTRODUCTION ... 9.1
9.2 USE OF THE TABLES .. 9.3
EXAMPLE 9–1. CLASS 5, STAINLESS STEEL DUCT CONVEYING CORROSIVE FUMES AT MODERATE TEMPERATURE ... 9.34
EXAMPLE 9–2. CLASS 1, STAINLESS STEEL DUCT FOR PROCESS EXHAUST AT HIGH TEMPERATURE .. 9.35
EXAMPLE 9–3. CLASS 5, STAINLESS STEEL DUCT CONVEYING CORROSIVES UNDER POSITIVE PRESSURE 9.36

CHAPTER 10 DUCT SELECTION TABLES – ALUMINUM

10.1 INTRODUCTION .. 10.1
10.2 USE OF THE TABLES .. 10.3
EXAMPLE 10–1. TYPICAL ALUMINUM DUCT SELECTION FOR A CLASS 1 APPLICATION ... 10.34
EXAMPLE 10–2. TYPICAL ALUMINUM DUCT SELECTION FOR A CLASS 1 APPLICATION UNDER POSITIVE PRESSURE 10.35
CHAPTER 11 SELECTION TABLES – SPIRAL LOCKSEAM PIPE

11.1 INTRODUCTION ... 11.1
11.2 COMMENTARY ... 11.3
11.3 DESIGN CRITERIA FOR SPIRAL DUCTS 11.4
11.4 USE GUIDELINES .. 11.5
11.5 SPIRAL PIPE – CARBON AND GALVANIZED 11.7
11.6 SPIRAL PIPE – STAINLESS STEEL 11.30
11.7 SPIRAL PIPE – ALUMINUM .. 11.42
11.8 POSITIVE PRESSURE SYSTEMS .. 11.54
11.9 COMMENTARY ON STIFFENERS AND FLANGES 11.55
EXAMPLE 11–1. TYPICAL GALVANIZED STEEL SPIRAL PIPE SELECTION FOR A CLASS 1 APPLICATION 11.8
EXAMPLE 11–2. TYPICAL GALVANIZED STEEL SPIRAL PIPE SELECTION FOR A CLASS 2 APPLICATION 11.18
EXAMPLE 11–3. TYPICAL STAINLESS STEEL SPIRAL PIPE SELECTION FOR A CLASS 5 APPLICATION 11.31
EXAMPLE 11–4. TYPICAL ALUMINUM SPIRAL PIPE SELECTION FOR A CLASS 1 APPLICATION .. 11.43
EXAMPLE 11–5. TYPICAL GALVANIZED STEEL SPIRAL PIPE SELECTION FOR A CLASS 1 APPLICATION UNDER POSITIVE PRESSURE 11.54

CHAPTER 12 STIFFENERS, FLANGES, AND FASTENERS

12.1 INTRODUCTION AND SCOPE ... 12.1
12.2 SELECTION OF STIFFENERS .. 12.1
12.3 SELECTION OF CONNECTING FLANGES 12.28
12.4 SELECTION OF BOLTS FOR CONNECTING DUCT 12.59
12.5 GASKETS, CAULKING, AND JOINT SEALANTS 12.82
EXAMPLE 12–1. COMPUTING STIFFENER REQUIREMENTS FOR SPECIAL APPLICATIONS .. 12.3
EXAMPLE 12–2. SELECTION OF ALTERNATE STIFFENERS FOR LONGITUDINAL SEAM PIPE .. 12.4
EXAMPLE 12–3. SELECTION OF ALTERNATE STIFFENERS FOR SPIRAL PIPE ... 12.5
EXAMPLE 12–4. SELECTION OF STIFFENERS USING STAINLESS STEEL TABLES .. 12.13
EXAMPLE 12–5. SELECTION OF STIFFENERS USING ALUMINUM TABLES .. 12.17
EXAMPLE 12–6. WELDING OF REINFORCEMENTS (CARBON STEEL) ... 12.22
EXAMPLE 12–7. WELDING OF REINFORCEMENTS (STAINLESS STEEL) ... 12.23
EXAMPLE 12–8. SELECTING BOLTS FOR CONNECTIONS (BASED ON EXAMPLE 7–1) .. 12.60

CHAPTER 13 HANGERS AND SUPPORTS

13.1 INTRODUCTION AND SCOPE ... 13.1
13.2 HANGERS AND SUPPORTS COMMENTARY 13.1
13.3 GENERAL GUIDELINES .. 13.1
13.4 METHODS FOR HANGING AND SUPPORTING DUCT 13.2
13.5 DUCT HANGERS AND SUPPORTS 13.2
EXAMPLE 13–1. CALCULATION OF DUCT SUPPORT LOAD 13.16

CHAPTER 14 WELDING

14.1 INTRODUCTION ... 14.1
14.2 WELDED JOINT ACCEPTED INDUSTRY PRACTICE 14.1
14.3 WELDED JOINT CONSIDERATIONS 14.1
14.4 WELDING PROCEDURES .. 14.5
14.5 WELDING SYMBOLS .. 14.13
CHAPTER 8 DUCT SELECTION TABLES – CARBON AND COATED STEELS

SECTIONS PAGE
8.1 INTRODUCTION .. 8.1
8.2 USE OF THE TABLES .. 8.3

TABLES
8-1.1 Minimum Gage Required for Round Duct,
Based on Support Spacing for Class 1 8.5
8-1.1M Minimum Thickness Required for Round Duct,
Based on Support Spacing for Class 1 8.5
8-1.2x Minimum Gage Required for Round Duct,
Based on Support Spacing for Class 2 8.6
8-1.2xM Minimum Thickness Required for Round Duct,
Based on Support Spacing for Class 2 8.7
8-1.3x Minimum Gage Required for Round Duct,
Based on Support Spacing for Class 3 8.12
8-1.3xM Minimum Thickness Required for Round Duct,
Based on Support Spacing for Class 3 8.13
8-1.4x Minimum Gage Required for Round Duct,
Based on Support Spacing for Class 4 8.18
8-1.4xM Minimum Thickness Required for Round Duct,
Based on Support Spacing for Class 4 8.19
8-1.5 Conversion of Insulation and Cladding Gravity Load
into Equivalent Particulate Load 8.24
8-2 Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –2 in. wg 8.26
8-2M Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –500 Pa. 8.27
8-3 Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –4 in. wg 8.30
8-3M Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –1000 Pa. 8.31
8-4 Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –6 in. wg 8.34
8-4M Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –1500 Pa. 8.35
8-5 Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –10 in. wg 8.38
8-5M Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –2500 Pa. 8.39
8-6 Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –15 in. wg 8.42
8-6M Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –3750 Pa. 8.43
8-7 Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –20 in. wg 8.46
8-7M Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –5000 Pa. 8.47
8-8 Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –30 in. wg 8.50
8-8M Material and Reinforcement Schedule
for Round Duct Classes 1 through 4 at –7500 Pa. 8.51

EXAMPLES
8-1 Modifying Particulate Density to Account for Insulation and Cladding
Gravity Loads .. 8.25
8-2 Typical Carbon Steel Duct Selection 8.54
8-3 Typical Galvanized Steel Duct Selection 8.54
8-4 Typical Galvanized Steel Duct Selection For a Positive Pressure Application 8.55