TABLE OF CONTENTS

FOREWORD .. iii

FRP TASK FORCE ... iv

CONSULTANTS .. iv

NOTICE TO USERS OF THIS PUBLICATION v

TABLE OF CONTENTS .. ix

CHAPTER 1 INTRODUCTION ... Page

1.1 SCOPE ... 1.1

1.2 USES ... 1.1

1.3 TERMINOLOGY ... 1.1

1.4 WHAT IS FRP ... 1.1

1.5 PURPOSE .. 1.2

1.6 TESTING AND BALANCE COORDINATION 1.2

1.7 DUCT SEALING – COMMERCIAL HVAC APPLICATIONS 1.2

1.8 DUCT LEAKAGE TESTS ... 1.3

1.9 CONTENT ... 1.3

CHAPTER 2 MATERIALS ... 2.1

2.1 INTRODUCTION ... 2.1

2.2 THERMOSET RESINS ... 2.1

2.3 CATALYSTS, PROMOTERS, INHIBITORS, AND OTHER ADDITIVES 2.3

2.4 FLAME RETARDANCE AND SMOKE GENERATION 2.3

2.5 ULTRAVIOLET COATINGS .. 2.4

2.6 TYPES OF REINFORCEMENT 2.4

CHAPTER 3 LAMINATE CONSTRUCTION 3.1

3.1 INTRODUCTION ... 3.1

3.2 CONTACT MOLDING .. 3.1

3.3 CORROSION BARRIER RESIN .. 3.1

3.4 CORROSION BARRIER .. 3.1

3.5 STRUCTURAL LAYER .. 3.1

3.6 EXTERIOR SURFACE ... 3.1

3.7 WALL THICKNESS ... 3.3

3.8 MINIMUM LAMINATE PHYSICAL CHARACTERISTICS 3.3

3.9 BOND CONSTRUCTION ... 3.3

3.10 MECHANICAL PROPERTIES .. 3.3

3.11 LINEAR COEFFICIENT OF THERMAL EXPANSION 3.8

3.12 STATIC ELECTRICITY .. 3.8

3.13 FIBER REINFORCEMENT .. 3.8

3.14 DESIGN REQUIREMENTS .. 3.8

CHAPTER 4 JOINING PROCEDURES 4.1

4.1 INTRODUCTION ... 4.1

4.2 PREPARATION FOR JOINING DUCT 4.1

4.3 PREPARATION OF STRAPPING 4.1
6-7 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with Negative Design Pressure of 7500 Pa
6-6 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with Negative Design Pressure of 30 in. wg
6-5 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with Negative Design Pressure of 5000 Pa
6-4 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with Negative Design Pressure of 2500 Pa
6-3 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with Positive Design Pressure of 7500 Pa
6-2 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with Positive Design Pressure of 30 in. wg
6-1 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with Positive Design Pressure of 10 in. wg
5-2M Negative Pressure Ratings of Filament Wound (Type X) Laminates in Pa
5-1M Negative Pressure Ratings of Types I & II Laminates in in. wg
5-2 Negative Pressure Ratings of Filament Wound (Type X) Laminates in in. wg
5-1 Negative Pressure Ratings of Types I & II Laminates in Pa
5-0 Minimum Mechanical Properties of Filament Wound (Type X) Laminates
4-0 Filament Wound (Type X) Composite Laminates
3-3 Standard Laminate Properties
3-2 Standard Laminate Composition Type II
3-1 Standard Laminate Composition Type I
3-0 Standard Laminate Composition Type I
TABLES
1-1 Standard Duct Sealing Requirements For Commercial HVAC Applications
1-0 Standard Duct Sealing Requirements For Commercial HVAC Applications

A-6 Data for Each Lamina (Theta (θ) Measured Clockwise from +Y Axis)
A-5 Material Properties for Filament Wound Laminates Model In L–t Coordinates, Combination S–7 (for Round Duct)
A-4 Data for Each Lamina (Theta (θ) Measured Clockwise from +Y Axis)
A-3 Material Properties For Filament Wound Laminates Model In L–t Coordinates, Combination S–5 (For Round Duct)
A-2 Safety Factors Given Filament Wound Laminate Combination and Vacuum
A-1 Nominal Laminate Thickness (in.) Given Duct Diameter and Vacuum

8-12 Hanger Rod Capacity SI
8-11 Hanger Angle Capacity I-P
8-10 Hanger Bar Capacity SI
8-9 Hanger Bar Capacity I-P
8-8 Hanger Rod Capacity SI
8-7 Hanger Rod Capacity I-P
8-6 Channel (Strut) Used as Trapeze
8-5 Trapeze Angle Support Capacity
8-4 Round FRP Duct Hangers Minimum Size
8-3 Rectangular FRP Duct Hangers Minimum Size
8-2 Weight of FRP Laminates
8-1 Minimum Flat Bar Split Ring Sizes for Round Duct
7-3 Minimum Flat Bar Split Ring Sizes for Round Duct
7-2 Minimum Flange Dimensions For Rectangular Duct
7-1 Minimum Flange Dimensions For Round Duct
6-12 Hanger Angle Capacity I-P
6-11 Hanger Angle Capacity SI
6-10 Hanger Bar Capacity SI
6-9 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 30 in. wg (7500 Pa)
6-8 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 20 in. wg (5000 Pa)
6-7 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 10 in. wg (2500 Pa)
6-6 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 20 in. wg
6-5 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 10 in. wg
6-4 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 5 in. wg (2500 Pa)
6-3 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 5 in. wg
6-2 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 2.5 in. wg (1250 Pa)
6-1 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 2.5 in. wg
6-0 Rectangular Duct External Reinforcement Using Semi-Circular Foam Stiffener with FRP Bond 1.25 in. wg (625 Pa)
5-14 Combination S–6 (For Round Duct)
5-13 Combination S–5 (For Round Duct)
5-12 Combination S–4 (For Round Duct)
5-11 Combination S–3 (For Round Duct)
5-10 Combination S–2 (For Round Duct)
5-9 Combination S–1 (For Round Duct)
5-8 Combination S–1 (For Round Duct)
5-7 Combination S–2 (For Round Duct)
5-6 Combination S–3 (For Round Duct)
4-12 Trapezoidal Angle Support Capacity
4-11 Trapezoidal Angle Support Capacity
4-10 Trapezoidal Angle Support Capacity
4-9 Trapezoidal Angle Support Capacity
4-8 Trapezoidal Angle Support Capacity
4-7 Trapezoidal Angle Support Capacity
4-6 Trapezoidal Angle Support Capacity
4-5 Trapezoidal Angle Support Capacity
4-4 Trapezoidal Angle Support Capacity
4-3 Trapezoidal Angle Support Capacity
4-2 Trapezoidal Angle Support Capacity
4-1 Trapezoidal Angle Support Capacity
4-0 Trapezoidal Angle Support Capacity
3-1 Standard Laminate Composition Type I
3-0 Standard Laminate Composition Type I
2-1 Combination S–1 (For Rectangular Duct)
2-0 Combination S–1 (For Rectangular Duct)
1-1 Combination S–1 (For Rectangular Duct)
1-0 Combination S–1 (For Rectangular Duct)