INTRODUCTION

This Master Index was developed to provide SMACNA members and design professionals with a centralized resource of SMACNA technical documents. It includes key words or phrases from 28 SMACNA technical manuals or guides.

The index was designed to be user-friendly by enabling contractors and design professionals to determine at a glance which SMACNA publications cover, for example, “Systems.” By turning to the word “Systems” in the Index, the user can identify SMACNA publications by specific section of a manual or guide. In the case of “Systems,” there are over 10 manuals which cover the topic.

Although abbreviations for each manual or guide are referenced at the bottom of each page, the following is a list of the SMACNA manuals or guides referenced throughout the Master Index:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>HVAC Systems – Applications</td>
</tr>
<tr>
<td>ASMM</td>
<td>Architectural Sheet Metal Manual</td>
</tr>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design</td>
</tr>
<tr>
<td>DEHG</td>
<td>Ducted Electric Heat Guide for Air Handling Systems</td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
</tr>
<tr>
<td>FRP</td>
<td>Thermoset FRP Duct Construction Manual</td>
</tr>
<tr>
<td>FSDG</td>
<td>Fire Smoke and Radiation Damper Guide for HVAC Systems</td>
</tr>
<tr>
<td>FSE</td>
<td>Food Service Equipment Guidelines</td>
</tr>
<tr>
<td>GSSC</td>
<td>Guide for Steel Stack Construction</td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach</td>
</tr>
<tr>
<td>IDC</td>
<td>Accepted Industry Practice for Industrial Duct Construction</td>
</tr>
<tr>
<td>KVS</td>
<td>Kitchen Ventilation Systems Guidelines</td>
</tr>
<tr>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Lagging</td>
</tr>
<tr>
<td>LTM</td>
<td>HVAC Air Duct Leakage Test Manual</td>
</tr>
<tr>
<td>MGW</td>
<td>The Manager’s Guide for Welding</td>
</tr>
<tr>
<td>OBUC</td>
<td>IAQ Guidelines for Occupied Buildings Under Construction</td>
</tr>
<tr>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
</tr>
<tr>
<td>RCDC</td>
<td>Rectangular Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RCSI</td>
<td>Residential Comfort Systems Installation Standards Manual</td>
</tr>
<tr>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines</td>
</tr>
<tr>
<td>SEIS</td>
<td>Seismic Restraint Manual – Guidelines for Mechanical Systems</td>
</tr>
<tr>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing</td>
</tr>
<tr>
<td>TABPG</td>
<td>TAB Procedural Guide</td>
</tr>
</tbody>
</table>

The Master Index will be updated and published electronically as new or revised technical publications become available.

You may order SMACNA technical publications using your American Express, VISA, or MasterCard by calling (703) 803-2980.
FOREWORD

Development and publication of the Index was necessitated by the continuing evolution of SMACNA's technical services in design and construction standards or guidelines for sheet metal construction.

SMACNA's technical activities remain one of the foundations of strength and service to SMACNA members and the construction industry. There are currently seven contractor-composed technical committees or task forces active in developing and publishing design and construction standards. The talents and resources of 50 committee or task force members—representatives of SMACNA member firms—participate in the following technical committees or task forces:

- Technical Resources Committee
- Fire, Smoke & Radiation Damper Task Force
- Architectural Sheet Metal Task Force
- Spiral, Round & Flat Oval Duct Task Force
- Double-Wall Duct Task Force
- Rectangular Industrial Duct Construction Task Force
- HVAC Duct Construction Standards Task Force
- HVAC Systems Duct Design Task Force

In addition to the technical committee activity and publications, SMACNA sponsors or co-sponsors technical research in all areas of sheet metal construction. SMACNA also maintains strong liaison with other standard setting organizations such as ASHRAE, CSI, NFPA, NAIMA, etc.

Through a combination of a commitment to quality in the design and construction process and increasing liaisons with other industry organizations, it is SMACNA's objective to continue to be the premier sheet metal industry trade association.
A Scale, APP 15.1
A.I.S.I., DCS 4.6; MGW 5.10
Abrasion, IDC 53; RNDC 2.3, 4.2, 4.5, 4.6, 5.4, 5.5, 5.6, 6.1, 6.3, 6.4, 6.7, 7.1, 7.2, 7.3, 7.5, 7.6, 7.13, 7.14, 7.17, 7.21, 7.27, 7.28, 8.1, 8.55, 9.2, 15.1, 15.42, 16.1, 16.5, 17.12, 17.15
flatback elbows, IDC 55
wear areas, IDC 54
ABS, See Acrylonitrile Butadiene Styrene
Absolute
pressure, TAB 2.19
temperature, TAB 2.1
zero, TAB 2.1
Absorber, APP 12.2
chiller/heater, APP 12.4
chillers, APP 2.8, 12.1
equipment, APP 12.12
systems, APP 12.1
Acceptance tests, COM 3.2, 5.1, 5.3, 7.1
Access, KVS 6.3, 6.4
Access doors, DCS 2.12; DSIG 1.3-1.7, 2.2-2.8, 3.17, A.4, A.5, A.14.24, C.3; FSDG 5.2, 5.3; IDC 60; LAG 3.44; RNDC 8.4, 9.4, 10.4, 11.8, 11.31, 11.43, 15.23-15.26, 16.2, 16.7
blow-thru unit, DCS A.27
casings, DCS 6.17
draw-thru unit, DCS A.31
flange, DSIG C.10, E.20
round duct, DCS 2.14
Access opening, fire resistive, KVS 3.3
Access openings, FRP 7.7; FSDG 4.1; KVS 1.2, 2.13, 4.2, 4.3; PVC 21, 44
location, PVC 53
Access panel, DCS 2.12; KVS 5.4, 8.1
Access to equipment, APP 2.25
Accessories, DD 3.21; DSIG E.2; FGDC 2.2
factory supplied, DD 6.15
Accessory devices, DD 3.20
Accessory equipment
bathroom exhaust fan, RCSI 10.5
control, RCSI 9.3
disconnect provision, RCSI 9.3
equipment selection, RCSI 6.2
filters, RCSI 4.5
grounding, RCSI 9.3
installation, RCSI 10.2
metal pipe, RCSI 10.1
power, RCSI 9.2
service, RCSI 9.3
support, RCSI 10.2
wiring, RCSI 9.3
ACGIH, IAQ 5.3, 10.6
Acids, FRP 2.1, 2.2
Acoustic ratio, LTM A.16
Acoustical
attenuation, DD 1.13
ceiling, DD 11.32, 11.40
lined ducts, DCS 2.25; DD 11.34, 11.35
lined elbows, DD 11.36
Acoustical Insulation and Lagging System (AI&L), LAG 2.15
Acoustics, APP 1.5; BSAR 7.9
Acrylics, PVC 68
Acrylonitrile Butadiene Styrene (ABS), PVC 67
Action incremental, APP 3.34
Action plan, BSAR 1.4
Active solar heating systems, ESAM 21.1
Activities log, IAQ A.14
Actuator, TAB 4.5
Adding sound pressure levels, DD 11.4
Adhesives, IAQ 4.1
liner, DCS v
Adiabatic
process, APP 15.1
Adjustable pattern diffusers, DD 3.15
Adjusting, BSAR 3.1
Adsorption filters, APP 2.21
Advertising, BSAR 1.4, 1.14, 1.15
Aerodynamic noise, APP 15.1; DD 11.1, 11.20, 15.1
Aerosols, APP 2.12

APP HVAC Systems – Applications Manual
ASMM Architectural Sheet Metal Manual
BSAR Building Systems Analysis & Retrofit Manual
COM HVAC Systems Commissioning Manual
DCS HVAC Duct Construction Standards Metal and Flexible Manual
DD HVAC Systems Duct Design Manual
DEHG Ducted Electric Heat Guide for Air Handling Systems
ESAM Energy Systems Analysis and Management
FGDC Fibrous Glass Duct Construction Standards
FRP Thermoset FRP Duct Construction Manual
FSDG Fire Smoke and Radiation Damper Guide for HVAC Systems
FSE Food Service Equipment Fabrication and Installation Guidelines
GBSC Guide for Steel Stack Construction
IAQ Indoor Air Quality - A Systems Approach
KVS Indoor Air Quality – A Systems Approach
LAG HVAC Air Duct Leakage Test Manual
LTM The Manager’s Guide for Welding
MGW The Manager’s Guide for Welding
OBUC IAQ Guidelines for Occupied Buildings Under Construction
PVC Thermoplastic Duct (PVC) Construction Manual
RCDC Rectangular Industrial Duct Construction Standards
RCSI Residential Comfort Systems Installation Standards
RNDC Round Industrial Duct Construction Standards
RSMG Residential Sheet Metal Guidelines
SEIS Seismic Restraint Manual – Guidelines for Mechanical Systems
TAB HVAC Systems Testing Adjusting and Balancing
TABPG TAB Procedural Guide
Agenda, TAB 12.4; TABPG 2.4
Air, TAB 2.6, 2.26
 blending, TAB 6.1
 ceilings, shafts, DSIG 2.2
 cleaners, APP 2.12
 cleanliness, APP 1.5
 conditioner, APP 11.2
 conditioning
 contaminant sources, OBUC 2.1
 control, APP 10.16; TAB 9.5
 cooled condensers, APP 12.8
 cooling, DSIG A.1
 density, TAB 2.8
 density correction factors, DD 14.18, 14.57, 14.61; LTM A.16
 density effects, DD 5.5
 diffusion, DD 3.5
 diffusion performance index (ADPI), DD 3.1, 3.4
 distribution, DD 4.1; PVC 52; RCSI 3.1; TAB 6.6
 distribution ceilings, DD 3.15; TAB 6.13
 distribution devices, TAB 12.2; TABPG 2.2
 distribution fundamentals, DD 3.5
 dual path, DCS A.30
 entrainment, TAB 6.6
 exhaust fans, APP 2.18
 filtering, DSIG A.1
 filtration, APP 2.12
 filtration devices, TAB 12.4; TABPG 2.4
 flow, switch, DEHG 6.1
 fresh supply, DSIG A.1
 friction, DEHG 3.2
 heat source, APP 11.13
 inlet types, DD 3.19
 intakes, outdoor, APP 2.2
 measurement devices, DD 10.3
 metric, APP 14.20
 motion characteristics, DD 3.9
 movement, APP 1.5
 openings relief, APP 2.2
 outlets, DD 9.13; OBUC 2.2
 oxygen, DSIG A.1
 single path, DCS A.29
 straight ducts, DD 6.5, 6.69
 strategies, IAQ 1.3
 symbols, DCS 1.2
 system advantages, TAB 7.1
 system basics, TAB 2.21
 system design, TAB 7.9
 system disadvantages, TAB 7.2
 system(s), TAB 7.1
 U.S., APP 14.19
 valves, TAB 6.3
 velocity, DSIG A.1; TAB 6.6
 velocity meter, TAB 13.11; TABPG 3.11
 volume, TAB 5.10
Air balance, KVS 7.1
Air bubbles, FRP 3.3, 4.7, 7.1
Air distribution, DSIG A.1
Air Distribution System, FSDG E.1
Air Duct Systems, FSDG 3.1, E.1
Air flow direction, KVS 2.13
Air handling system, DSIG B.1
 central, DSIG A.1
 zones, DSIG A.1
Air intakes, IAQ 6.10
Air Leakage Control, FSDG F.3
Air movement, KVS 1.2
Air piping, SEIS 3.2
Air pollutants, OBUC 2.1
Air pollution, FRP 1.1
Air pollution control units (APCU), KVS 3.3, 3.4
 purpose, KVS 3.4
Air Pressure Differential, FSDG F.1
Air quality assessment, OBUC 2.6
Air sampling, OBUC 5.2
Air Sampling-Type Detector, FSDG E.1
Air terminal boxes, TAB 6.1
 dual duct, TAB 6.2
 reheat, TAB 6.1
 types, TAB 6.1
Air terminal devices, RCSI 1.4
Air terminals, DSIG 1.3
Air velocities in ducts, DSIG E.1
Air volume control, KVS 2.13
Air washer chart, DD 9.11
Airborne
 contaminants sources of, OBUC 2.1
 building systems, OBUC 2.1, 2.2, 2.2
 construction products, OBUC 2.1
 equipment, OBUC 2.1
 identifying, OBUC 4.2
 release during demolition, OBUC 2.1
 waste materials, OBUC 2.1
 noise, DD 11.1, 15.1
 sound, DD 15.2
Airflow, FSDG 5.1
 adjustment, TAB 14.8; TABPG 4.8
 clean room, APP 9.3
 control, APP 3.6
 measurements, TAB 13.7; TABPG 3.7
 measuring instruments, TAB 11.1, 11.9
 rate, TAB 6.1
 requirements, RCSI 6.2
 maximum fan, APP 7.26
 maximum zone, APP 7.25
 terminals, TAB 13.6; TABPG 3.6
 totals, TAB 13.6; TABPG 3.6
Airfoil fans, TAB 5.2
Air-hydronic systems, APP 2.1
Airstream mixtures, TAB 2.17
Air-to-air
heat pump, APP 11.2, 11.11
plate exchangers, DD 9.12
single tube exchangers, DD 9.12
Air-to-transmission ratio, APP 8.6
Air-to-water heat pumps, APP 11.13
Air-vapor relationship, TAB 2.7
Air-water induction unit, APP 8.2
Ak factors, TAB 13.5; TABPG 3.5
Alarm printers, TAB 4.9
Alcohols, IAQ 4.1
Alkalies, FRP 2.1, 2.2
Alkanes, IAQ 3.9
All air systems, APP 2.1
All hydronic systems, APP 2.1
All water systems, APP 10.1
Allergens, IAQ 4.1
Alloys, MGW 2.23
Alternative investments, IAQ 14.8
Alternative mode, TAB 15.12; TABPG 5.12
Aluminized steel, RNDC 3.1
Aluminum, DD 12.2; DSIG B.1; LAG 1.2, 1.5;
MGW 2.22, 2.29, 5.10; RNDC iii, 1.1, 1.2, 1.4, 3.2,
3.10, 3.11, 3.12, 3.13, 4.1, 4.2, 4.3, 5.1, 5.8, 7.2, 7.3,
8.24, 10.1, 11.1, 11.3, 11.42, 11.45, 11.46, 11.47,
11.48-11.51, 11.52, 11.53, 12.1, 12.2, 12.16, 12.17,
12.18-12.20, 12.24, 12.25, 12.25, 12.28, 12.34,
12.52, 12.56, 12.61, 12.62, 13.1, 13.14, 13.15, 14.5,
14.11, 14.12, 15.29, 17.13; RSMG C.8, 1.12, 1.13,
1.17, 1.27, 1.30
advantages, DSIG B.1
applications, DSIG B.1
conversion from steel, DCS 1.58
dimension adjustments, DCS 1.59
reinforcements, DCS 1.59
thickness adjustments, DCS 1.59
duct construction, DCS 1.58
duct weight tables, DCS A.5
sheet thicknesses, DCS A.5; DSIG B.6
Aluminum Association, DSIG B.6
AMCA, BSAR 3.15; FSDG R.1
AMCA Standard 210, KVS 4.1
American Marketing Association, BSAR 1.1
American National Standards Institute (ANSI),
FSDG 3.1
Amperage, MGW 3.3
Amperage Readings, TAB 3.5
Analog in (AI), APP 3.45
Analog n (AI), TAB 4.8
Analog out (AO), APP 3.45; TAB 4.9
Analysis of Measurements, TAB 13.3; TABPG 3.3
Anchor, FGDC 6.6
Anchor bolts
companion angles, GSSC 4.34
length, GSSC 6.10
placement (figure), GSSC 4.2
Anchors, SEIS 2.1
Anemometer, APP 15.2; TAB 11.5
deflection vane, TAB 11.6, 11.9
electric rotating vane, TAB 11.6, 11.9
thermal, TAB 11.7, 11.9
Angle, FGDC 5.14
connectors, SEIS 2.3
flanges, RCDC 8.7
properties, DCS A.12
Angle reinforcing
aluminum, DCS 1.59
Angular conversion (to metric), DD 14.17
Animal dander, IAQ 5.2
Annual
cost, DD 2.2
operating cost, ESAM 14.10
owning cost, BSAR 1.22
Annual flow indicator, TAB 11.25
ANSI, MGW 4.4
ANSI standard, DSIG B.4
ANSI/ASME RTPB1, FRP 5.1, E.1
ANSI/NFPA 91, FRP E.1
ANSI/NSF-2-1996, FSE 1.1
Antimony Trioxide, FRP 2.1, 2.2, 2.4

APP HVAC Systems – Applications
ASMM Architectural Sheet Metal
Manual
BSAR Building Systems Analysis &
Retrofit Manual
COM HVAC Systems Commissioning
Manual
DCS HVAC Duct Construction
Standards Metal and Flexible
DD HVAC Systems Duct Design
DEHG Ducted Electric Heat Guide for
Air Handling Systems
ESAM Energy Systems Analysis and
Management
FGDC Fiberglass Glass Duct Construction
Standards
FRP Thermoset FRP Duct Construction
Manual
FSDG Fire Smoke and Radiation Damper
Guide for HVAC Systems
FSE Food Service Equipment Fabrication
and Installation Guidelines
GSSC Guide for Steel Stack Construction
IAQ Indoor Air Quality – A Systems
Approach
IDC Accepted Industry Practice for
Industrial Duct Construction
KVS Kitchen Ventilation Systems and
Guidelines
LAG Accepted Industry Practices for Sheet
Metal Lagging
LTM HVAC Air Duct Leakage Test Manual
MGW The Manager’s Guide for Welding
OBUC IAQ Guidelines for Occupied Buildings
Under Construction
PVC Thermoplastic Duct (PVC)
Construction Manual
RCDC Rectangular Industrial Duct
Construction Standards
RCSI Residential Comfort Systems
Installation Standards
RNDC Round Industrial Duct Construction
Standards
RSMG Residential Sheet Metal Guidelines
SEIS Seismic Restraint Manual –
Guidelines for Mechanical Systems
TAB HVAC Systems Testing Adjusting
and Balancing
TABPG TAB Procedural Guide
Appearance, FRP 3.3, 7.1, 7.9
Application, See Also Heater applications; FRP 2.5, 5.9, 6.1, 6.9; PVC 61
guide, APP 1.4
slot diffuser, DCS 2.19; DD 3.13
Applied heat pump systems, APP 11.11
Approach, cooling tower, APP 12.14
Architect, FSDG 4.1
Architects, KVS 1.1
Area change losses, DD 5.18
Area Separation Wall, FSDG 2.1
Area Separations, FSDG 3.3
Area table, IDC 84
Area-Type Smoke Detector, FSDG E.1
ARI, BSAR 8.16
Aromatic hydrocarbons, IAQG 3.10
Asbestos, DSIG B.2; IAQ 10.6
Asbestos Cement, DSIG B.2
advantages, DSIG B.2
former applications, DSIG B.2
remarks, DSIG B.2
ASHRAE, BSAR 1.12, 4.1, 5.4, 6.3, 6.4, 8.2, 8.13, 10.1; DSIG A.2; FSDG R.1; IAQ 1.2, 3.7, 9.3, 10.4; RSMG C.15
 - Fundamentals Handbook, DSIG A.2
 - Systems Handbook, DSIG C.42
ASHRAE handbooks, KVS 1.3, 2.1
ASME, MGW 5.10
Aspect ratio, DD 2.3, 2.4
Assemblies, roof-ceiling, FSDG 4.1
Assessment, hazard, OBUC 2.4
Associations, BSAR 1.12
ASTM, ASMM 6.1; DSIG B.4; FRP 3.3, 7.1, 7.5, 7.6, 7.8, E.1; FSDG 3.1, R.1; RSMG C.15
 - A167, DSIG B.5
 - A653, DSIG C.1
 - A666, DSIG B.5
 - B209, DSIG B.6
 - C581, FRP 3.1, 7.1, B.1, E.1
 - C582, FRP 3.1, 7.9, E.1
 - D2583, FRP 3.3, 7.9, 8.1, E.1
 - D2584, FRP E.1
 - D3982, FRP 3.1, 7.9, E.1
 - D638, FRP 5.1, 5.5, 6.1, E.1
 - D648, FRP D.3
 - D790, FRP 5.5
 - D883, FRP 7.1
 - E662, FRP E.1
 - E84, FRP 2.1, 2.2, 2.4, D.3, E.1
ASTM Standards, DCS A.2; DD 12.6
ATC, TAB 4.1
dampers, TAB 4.4
system adjustment, TAB 4.6

valves, TAB 4.3
Atmospheric dust, APP 2.12
Atomic radiation, DSIG C.2
Attachment(s), DSIG C.57, C.58, C.59, D.1
Audit, BSAR 2.10, 2.28, 4.2
Automatic
 - control dampers, TAB 4.3
 - control valves, TAB 4.3
dampers, APP 3.13
mode switching, APP 3.44
reset, APP 3.4
temperature control systems, TAB 4.1
valves, APP 3.11
Automatic monitoring device, DSIG 2.2
Automatic temperature control, See Also ATC dampers
Automatic Temperature Control (ATC), TAB 12.2; TABPG 2.2
Auxiliary
 - A.W.S., MGW 5.10, 6.2
 - air hoods, APP 9.27
 - control equipment, APP 3.14
heat, DEHG 2.1
switches, APP 3.14
Auxiliary equipment, FSDG B.3
Axial fans, DD 6.3, 6.16; TAB 5.2

Back-draft dampers, FRP 7.7
Backshelf, KVS 2.11
Backward Inclined (BI) Fans, TAB 5.1
BACnet, ESAM iii, 6.1, 6.2, 6.3
Baffle(s), RSMG 1.27
Baffles, condensation, KVS 2.4
 - internal, KVS 7.2
Balance Fittings, TAB 9.6
Balance Rings, TAB 8.4
Balancing, BSAR 3.1, 4.3, 4.7, 10.3; ESAM 1.7, 2.4, 2.6, 3.1; IDC 74; TAB 14.13; TABPG 4.13
 - criteria, TAB 13.8; TABPG 3.8
damper locations, DCS 2.15; DD 10.3
dampers, TAB 6.5
devices, TAB 12.5; TABPG 2.5
 - procedures, TAB 13.3; TABPG 3.3
 - proportional method, TAB 13.3; TABPG 3.3
 - reports, COM 5.4
 - specific systems, TAB 15.5; TABPG 5.5
Balancing and adjusting, PVC 56
Bar
 - properties, DCS A.10
Barometer, APP 15.3
Barrier penetrations, DSIG 1.3
Baseboard, APP 10.2; TAB 8.14
Basic duct construction, See Also Duct; DCS 1.3
Basic electricity, TAB 3.1
Basics of sound, DD 11.3
Batten seam, ASMM 6.13
Beaded duct, DCS 1.74
Bearing supports, DD 6.15
Bearings, TAB 8.3
Belt guards, DCS A.35; DD 6.16
Belt tension, KVS 8.2; TAB 5.10
Bending Moment, RNDC 4.1, 4.2, 4.3, 4.5, 4.6, 4.8,
5.1, 5.5, 5.6, 5.10, 6.1, 6.7, 6.9, 7.1, 7.2, 7.3, 7.9,
7.10, 7.17, 7.23, 7.24, 7.29, 7.30, 8.3, 9.2, 9.4, 10.2,
10.3, 11.4, 11.7, 11.30, 11.42, 12.40-12.47, 12.54,
12.55, 12.60
Benzene, IAQ 4.1
Bernoulli’s Theory, KVS 7.2
Bibliography, GSSC A.5; IDC 95
Bimetal element, APP 3.9
Bioaerosols, IAQ 6.9
Biohazard containment, APP 9.30
Biological
material, OBUC 2.2
safety cabinets, APP 9.28
Bisphenol A Fumarates, FRP 2.2
Black iron (steel), DD 12.2
Blade, TAB 6.9
effect grilles, DD 3.6
frequency, DD 11.15
frequency increments, DD 14.68
Blade Grilles, Adjustable, TAB 6.12
Blast Gate, RNDC 15.29
Bleed type controller, APP 3.18, 3.19
Board, FGDC 1.1, 2.1
Board fatigue, DSG 2.1
BOCA, FSDG R.1
BOCA National Building Code, FSDG 3.1
Body heat loss, TAB 6.10
Boiler conditions, TAB 15.8; TABPG 5.8
Boiler piping, TAB 9.7
Boiler(s), APP 2.7, 10.4; RCSI 4.2; TAB 8.13, 12.2,
15.8
breeching, DCS 2.22
controls, APP 3.32
hot water, APP 10.6
maintenance, RCSI 4.9
nameplate data, RCSI 4.9
operation, APP 10.5
steam, APP 10.6
Boilers, TABPG 2.2, 5.8
Bolt Material Properties, RNDC 7.11, 7.18, 7.25,
12.61
Bolt size requirements, GSSC 4.35
Bolt size table, RCDC 7.62
Bolt Strength Reduction Factor, RNDC 12.62
Bolt Stress Area, RNDC 12.63
Bolted flange connections, RCDC 7.62
Bolts, RNDC 4.1, 4.3, 4.10, 5.10, 6.10, 7.2, 7.3,
7.11, 7.12, 7.18, 7.25, 7.31, 7.32, 11.55, 12.30,
12.31, 12.33, 12.34, 12.40-12.47, 12.48-12.51,
12.52, 12.54, 12.55, 12.56, 12.58, 12.59-12.80,
13.3, 13.54-13.85, 13.86-13.89, 15.5, 15.6, 15.18,
15.19, 15.34, 16.3, 17.17; SEIS 2.3, 3.1
BOMA, BSAR 1.11
Box Rib, LAG 2.18
Boxed Opening, LAG 3.22
Braces, RSMG 1.17
Bracing, SEIS 1.1, 2.1, 2.2, A.1, B.1
Bracing of Ducts, SEIS 2.2, 3.2, 4.1, 8.1,
Bracing of Pipes, SEIS 2.3, 3.2, 4.1, 8.1, B.1
Brake Power, TAB 3.7
Branch, FGDC 4.7
45-degree entry, DCS 2.8
connections, DCS 2.8
duct, KVS 3.1
supply, DCS 2.2
takeoffs, DD 3.8
Branched polyethylene, PVC 66
Brazing, MGW 2.3
Breakaway Connection, FSDG 2.1
Bridle vane anemometer, IDC 88
British Thermal Unit(s) (BTU), APP 15.3; DD 15.2;
TAB 2.1
Brochures, BSAR 1.8

APP HVAC Systems – Applications
ASMM Architectural Sheet Metal Manual
BSAR Building Systems Analysis & Retrofit Manual
COM HVAC Systems Commissioning Manual
DCS HVAC Duct Construction Standards Metal and Flexible
DD HVAC Systems Duct Design
DEHG Ducted Electric Heat Guide for Air Handling Systems
ESAM Energy Systems Analysis and Management
FGDC Fibrous Glass Duct Construction Standards
FRP Thermoset FRP Duct Construction Manual
FSDG Fire Smoke and Radiation Damper Guide for HVAC Systems
FSE Food Service Equipment Fabrication and Installation Guidelines
GSSC Guide for Steel Stack Construction
IAQ Indoor Air Quality – A Systems Approach
IDC Accepted Industry Practice for Industrial Duct Construction
KVS Kitchen Ventilation Systems and Guidelines
LAM Accepted Industry Practices for Sheet Metal Lagging
LGT HVAC Air Duct Leakage Test Manual
MGW The Manager’s Guide for Welding
OBUC IAQ Guidelines for Occupied Buildings Under Construction
PVC Thermoplastic Duct (PVC) Construction Manual
RCDC Rectangular Industrial Duct Construction Standards
RCSI Residential Comfort Systems Installation Standards
RNDC Round Industrial Duct Construction Standards
RSWM Residential Sheet Metal Guidelines
SEIS Seismic Restraint Manual – Guidelines for Mechanical Systems
TAB HVAC Systems Testing Adjusting and Balancing
TABPG TAB Procedural Guide
BTU capacity, DEHG 3.1
Buckstays, LAG 3.52
Buffer zones, DD 11.1
Building. See Also Expansion joints
 airflow analysis, APP 9.37
 changes, APP 9.1
 characteristics, BSAR 2.4
 codes/regulations, BSAR 2.17, 5.1; COM 2.1,
 3.1, 5.1, 5.3, 7.1, 7.2, 7.4; DD 1.3
 commercial, BSAR 6.5
 envelope, BSAR 2.18
 existing, BSAR 5.4, 5.6
 expansion, ASMM 172
 owners, BSAR 6.1
 pressurization, APP 2.25
 regulations, BSAR 2.17
 static control, APP 7.19
 survey, BSAR 2.7
 walk through, BSAR 2.7, 2.9
Building automation system (BAS), KVS 2.16
Building code, KVS 3.2
Building Compartment Leakage, DSIG 1.3
Building Height, FSDG F.3
Building Lighting Levels, ESAM 8.1
Building materials, RSMG C.6
Building Openings, FSDG 3.3
Building permits, KVS 1.2
Building static control, TAB 14.2; TABPG 4.2
Buried Duct, FRP 7.8
Business
 retrofit, BSAR 2.27
Butt Joint, LAG 3.24; RCDC 8.2
Butterfly valve, APP 3.12
Button punched, LAG 3.4
Buttwelded Seam, RNDC 15.1, 15.2
Bypass, APP 12.6, 15.3
 damper, APP 3.6
 factors, APP 2.5
 multizone system, APP 4.6
 or dump VAV systems, APP 7.4
 section, APP 2.6
 type VAV system, APP 7.2
 VAV terminals, APP 7.16
Bypass (Dumping) Boxes, TAB 6.3
Bypass Type Box, TAB 6.3
Bypass Valves, TAB 15.4; TABPG 5.4
Bypass VAV Boxes, TAB 14.11; TABPG 4.11
Cabinet(s), FSE 6.2
Cables, MGW 3.4, 3.5, 4.2; SEIS 3.1, B.1
Calculating system effects, DD 6.17
Calibrated balancing valves, TAB 11.25, 15.1;
 TABPG 5.1
Calibration, APP 15.3; BSAR 8.8; DD 15.3
Callbacks, COM 3.2
Canopy, ASMM 3.2; KVS 2.4, 2.5
Capacity, LTM A.13
 loss, LTM A.12
Capillary tube, APP 12.4; TAB 10.3
Capital
 cost(s), BSAR 1.19
 recovery factors, BSAR 1.18
Capital recovery factors, ESAM 14.10
Carbon Dioxide, IAQ 8.3, 8.6, E.1
Carbon Monoxide, IAQ 1.5
Carbon Steel, DD 12.2; DSIG B.1; RNDC 1.1, 1.3,
 1.4, 3.1, 3.3, 4.1, 4.2, 4.3, 5.1, 5.8, 7.2, 7.3, 7.6,
 7.27, 7.29, 7.30, 8.1, 8.2, 8.5-8.23, 8.26-8.53, 8.54,
 8.55, 9.1, 11.1, 11.2, 11.7, 11.9, 11.12-11.17, 11.20,
 11.21, 11.22, 11.23, 11.24-11.27, 11.28, 11.29, 12.1,
 12.2, 12.6, 12.16, 12.24, 12.25, 12.26, 12.28, 12.34,
 12.36-12.39, 12.40-12.47, 12.52, 12.56, 12.59,
 12.61, 12.62, 13.1, 13.2, 13.10, 13.11, 13.16,
 13.54-13.81, 14.5, 14.6, 14.7, 15.29, 17.13
 advantages, DSIG B.1
 applications, DSIG B.1
Carbon Veil, FRP 2.5, 3.4
Carpets, IAQ 3.8, 10.11
Casings, DCS 6.2; DSIG C.1, C.71; LAG 1.1
 access doors, DCS 6.15, 6.18
 alternate construction, DCS 6.5
 arrangement, DCS 6.8
 built-up standing seam, DCS 6.3
 construction standards, DCS 6.2
 curb detail, DCS 6.13
 double wall, DCS 6.12
 drain pans, DCS 6.14
 eliminators, DCS 6.14
 inside seam, DCS 6.10
 over 2” w.g., DCS 6.8
 panels, DCS 6.6, 6.9
 pipe penetration, DCS 6.15
 seam, DSIG C.72
 standing seam, DCS 6.4
Cast iron pipe, SEIS 3.3
Cast-in-place concrete inserts, SEIS 3.1
Categories, TAB 6.1
Caulks, RCSI 10.6; RNDC 8.4, 9.4, 10.4, 11.8,
 11.31, 11.43, 12.82, 12.83, 16.6
Ceiling
 assemblies, FSDG 9.1
 branch ducts, DCS 2.19
 contractor, FSDG 11.2
 diffusers, DCS 2.19; TAB 6.8
 floor assembly, FSDG 11.4
 heat stop, FSDG 9.3
 height and clearances, KVS 5.1
 induction boxes, TAB 6.2
 installations, DD 3.12, 3.13
<table>
<thead>
<tr>
<th>App</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>HVAC Systems – Applications Manual</td>
</tr>
<tr>
<td>ASMM</td>
<td>Architectural Sheet Metal Manual</td>
</tr>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible Design</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design Manual</td>
</tr>
<tr>
<td>DEHG</td>
<td>Ducted Electric Heat Guide for Air Handling Systems</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards Manual</td>
</tr>
<tr>
<td>FRP</td>
<td>Thermoplastic FRP Duct Construction Manual</td>
</tr>
<tr>
<td>FSDG</td>
<td>Fire Smoke and Radiation Damper Guide for HVAC Systems</td>
</tr>
<tr>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
</tr>
<tr>
<td>GBSSC</td>
<td>Guide for Steel Stack Construction and Installation Standards</td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach</td>
</tr>
<tr>
<td>ID</td>
<td>Accepted Industry Practice for Ducted Electric Heat Construction Standards</td>
</tr>
<tr>
<td>IC</td>
<td>Industrial Comfort Systems Standards</td>
</tr>
<tr>
<td>KVS</td>
<td>Kitchen Ventilation Systems and Design Guidelines</td>
</tr>
<tr>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Lagging Manual</td>
</tr>
<tr>
<td>LTM</td>
<td>HVAC Air Duct Leakage Test Manual</td>
</tr>
<tr>
<td>MGW</td>
<td>The Manager’s Guide for Welding</td>
</tr>
<tr>
<td>OBU</td>
<td>IAI Guidelines for Occupied Buildings Under Construction Standards</td>
</tr>
<tr>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
</tr>
<tr>
<td>RCD</td>
<td>Rectangular Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RCSD</td>
<td>Residential Comfort Systems Installation Standards</td>
</tr>
<tr>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines Manual</td>
</tr>
<tr>
<td>SEIS</td>
<td>Seismic Restraint Manual – Guidelines for Mechanical Systems</td>
</tr>
<tr>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing Manual</td>
</tr>
<tr>
<td>TABPG</td>
<td>TAB Procedural Guide</td>
</tr>
</tbody>
</table>
areas, RCSI 10.2
metal pipe, RCSI 10.1
towers (hyperbolic), APP 12.16
Chlorendic anhydride, FRP 2.1
Chlorine, FRP 2.4
Chopped strand mat, FRP 2.5, 3.1, 7.1, B.1, D.1, D.2, D.3, D.5
Chronometric, TAB 11.12
Chutes
 linen, ASMM 8.44
 trash, ASMM 8.44
Circles
 area, DCS A.9
 circumference, DCS A.9
diameter, DCS A.9
Circular equivalent(s), DD 5.12, 6.8, 14.10, 14.14; TAB 2.23
Circumference table, DCS A.11; IDC 84
Cladding, LAG 1.1; RND 1.1, 4.1, 4.3, 4.11, 5.1, 5.2, 6.1, 7.2, 7.3, 7.5, 7.8, 7.13, 7.16, 7.20, 7.23, 7.27, 7.33, 8.2, 8.3, 8.5, 8.24, 8.25, 8.54, 9.3, 9.5, 9.34, 10.3, 10.5, 11.9, 11.33, 11.45, 12.4, 12.13, 13.16, 13.54-13.85, 17.3, 17.6, 17.8, 17.10, 17.12, 17.14, 17.15, B.7
Class, FGDC 2.2
Class I air duct rating, DSIG E.2
Class I cabinets, APP 9.29
Class II cabinets, APP 9.29
Class III cabinets, APP 9.30
Classes of clean room, See Also Clean room; APP 9.3
Classification, Source, IAQ 7.1
Clean room, APP 9.1; BSAR 3.17
 air pressure relationship, APP 9.8
 airflow, APP 9.3
class 10, APP 9.10
class 10, 000, APP 9.12
class 100, APP 9.11
 control systems, APP 9.7
design, APP 9.5
 filtration, APP 9.5
HVAC ductwork, APP 9.8
HVAC systems, APP 9.1
 standards, APP 9.13
 temperature and humidity, APP 9.8
testing, APP 9.13
Cleaning, BSAR 8.9; IAQ 3.1, 3.7, 7.2, 8.6, 10.11
 chemical, IAQ 11.4
 safety, IAQ 10.6
Cleaning and maintenance, KVS 2.13
Cleanliness, air, APP 1.5
Cleanout doors, See Access Doors; IDC 60
Clean-up, FRP 4.4
Clearance, DEHG 3.2
Clearance requirements, KVS 5.5
Clearances -to-combustible, KVS 3.3
Cleat(s), RSMG 1.17
Clients, BSAR 1.11
Climate
 closed-circuit fluid coolers, APP 12.17
Closed loop control, APP 7.19; TAB 14.2; TABPG 4.2
 systems, APP 3.2, 11.8; TAB 9.8
Closed system curve, TAB 8.7
Closed system(s), APP 10.14; TAB 2.27
Closing, BSAR 1.11, 2.26
Closure, FGDC 2.1
Closure panels, KVS 6.4
Closure strip, LAG 3.29
Closures, See Also Joint and Seam Preparation;
 ASMM 8.34; DSIG 2.5, E.3-E.5; FGDC 3.2, 3.4, 3.5
 general, DSIG E.2
 notes, DSIG E.3
Coanda effect, DD 3.5; TAB 6.8
Cobalt Naphthenate, FRP 2.2, 2.3
Cobalt Octoate, FRP 2.2
Code
 local, FSDG 3.3
 officials, FSDG 3.3, 4.1
Code and ordinances, DD 1.2
Code Authorities, FSDG 3.1
 local, FSDG 3.1
 state, FSDG 3.1
Code requirements, FSDG 3.1; KVS 3.1, 4.1, 5.1
Codes, BSAR 5.1; DD 1.3; DSIG 1.3, B.1, C.3; IAQ 9.3; IDC 3; KVS 1.3; MGW 6.2, 6.3
 air quality, IDC 3
 building, DSIG A.1
 duct construction, DCS v; IDC 3
 fire and smoke, DD 1.3
 HVAC system, DD 1.2
 mechanical, DSIG 1.3
Coefficient of
 discharge, DD 15.3
 expansion, DD 15.3
 flow, APP 3.5
 heat pump, DD 15.3
 negative loss, DD 5.13
 performance (COP), ESAM 4.8, 4.9
Coils, ESAM 1.7; TAB 15.6; TABPG 5.6
Coils/terminal units
 bypass factors, APP 2.5
 direct expansion, APP 12.4
 dry expansion, APP 12.3
 ducted, DCS 2.11
 electric, APP 3.24
 elements, DEHG 1.1
 enclosed, DEHG 1.1
 heating and cooling, DD 9.8
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
<td>GSSC</td>
<td>Guide for Steel Stack Construction</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design Manual</td>
<td>IDC</td>
<td>Accepted Industry Practice for Industrial Duct Construction</td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Laging</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
<td>LTM</td>
<td>HVAC Duct Air Leakage Test Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGW</td>
<td>The Manager's Guide for Welding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OBUC</td>
<td>IAO Guidelines for Occupied Buildings Under Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCDC</td>
<td>Rectangular Industrial Duct Construction Standards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCSi</td>
<td>Residential Comfort Systems Installation Standards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEIS</td>
<td>Seismic Restraint Manual – Guidelines for Mechanical Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TABPG</td>
<td>TAB Procedural Guide</td>
</tr>
</tbody>
</table>

Cold
- calling, BSAR 1.9
- Cold-formed angles, DCS 1.33; SEIS 3.1
- Cold-rolled Steel, RNDC 3.1, 3.4, 3.12, 3.13, 8.1, 8.26-8.53, 8.54, 11.10-11.11, 12.24, 17.13
- Collection devices, KVS 4.3
- Colloidal Suspension, FRP 2.4
- Color Stability, FRP 2.2
- Column covers, ASMM 8.28
- Columns (Pipe), RNDC 13.50, 13.51
- Combining sound pressure levels, DD 11.4
- Combustibles, OBUC 2.2
- Combustion, IAQ 3.9
 - air, RCSI 2.8, 10.3
 - equipment
 - confined, RCSI 10.3
 - unconfined, RCSI 10.5
 - outdoor, RCSI 10.5
 - products, OBUC 2.2
- Comfort, BSAR 5.4; DD 2.2, 3.1; IAQ 1.2, 1.3, 1.4
 - chart, DD 15.3
 - conditioning, DD 3.1
 - cooling, DD 15.3
 - criteria, DD 3.1
 - zone, DD 15.3; TAB 6.6
- Commissioning
 - acceptance phase, COM 5.2, 7.1, 7.4-7.6, 9.6
 - acceptance procedures, COM 7.3
- authority, COM 1.1, 2.2, 3.4, 4.1, 4.2, 5.1, 5.3, 5.4, 7.1-7.6, 8.1, 9.6
- benefits, COM 3.1, 3.2, 5.2, 6.3
- comprehensive, COM 2.2, 5.2, 5.3, 7.1
- construction phase, BSAR 5.6; COM 1.1, 4.1, 4.2, 7.1, 7.3, 7.5, 7.6
- contractors, COM 2.2, 3.2, 3.4, 5.2
- costs, COM 2.1, 5.3, 5.4, 9.1-9.3, 9.5, 9.6
- criteria, COM 3.1, 7.1, 7.2, 8.1, 9.1, 9.4, 9.5
- designers, COM 3.4
- duties, COM 4.1, 4.6-1.63
- owners, COM 1.1, 3.1-3.4, 5.3, 8.1, 9.5
- qualifications, COM 4.1, 4.2, 5.3, 7.2
- recommissioning, COM 3.3, 5.4, 9.6
- responsibilities, COM 2.2, 4.1, 7.2, 7.3
- Commissioning demonstration, COM 3.4, 5.2, 6.3, 7.1, 7.3-7.7
- deferred, COM 6.3
- event matrix, COM 7.2
- functional program, COM 7.1
- instruction, COM 2.1, 3.4, 5.2, 6.3, 6.4, 7.3-7.6, 9.6
- levels, BSAR 5.2; COM 1.1, 2.2, 3.1, 3.3, 3.4, 4.2, 5.2-5.4, 6.3, 7.1, 8.1, 9.2, 9.6
- maintenance, BSAR 8.9
- manual, BSAR 8.4
- meetings, COM 7.4-7.6
- organization, COM 5.1, 8.1
- performance tests, COM 1.1, 3.2, 4.2, 5.3, 6.1-6.3, 7.3-7.6, 8.1, 9.1
- performance verification, COM 3.1, 3.4, 7.3-7.6, 8.1, 9.2, 9.6
- plan, COM 1.1, 3.2, 4.1, 5.3, 6.2, 7.2-7.6, 9.2, 9.6
- procedures, COM 2.2, 5.2, 6.1-6.4, 7.1, 7.2, 8.1
- process, COM 1.1, 2.1, 2.2, 3.1-3.4, 4.1, 4.2, 5.1-5.4, 6.2, 7.1, 7.3-7.6, 8.1, 9.1, 9.4-9.6
- program document, COM 7.1, 7.2
- program phase, COM 3.1
- reference documents, COM 2.2, 7.3
responsibilities, COM 2.1, 2.2, 3.2, 4.1, 4.2, 5.1-5.3, 6.1-6.3, 7.1-7.3, 7.6
schedule, COM A.1
scope, COM 1.1, 2.2, 7.1-7.3, 8.1, 9.1, 9.2, 9.5
seasonal, COM 6.3
specification, COM 2.2, 7.2-7.4, 8.1
team, COM 4.1, 7.2-7.4
team members, COM 4.2, 7.2-7.4
tests, COM 1.1, 1.2, 3.1, 3.4, 4.1, 5.1, 5.3, 6.1-6.3, 7.2-7.6, 8.1, 9.1, 9.2, 9.5, 9.6
time requirement, COM 3.3, 3.4, 6.2, 7.2
verification criteria, COM 5.1
Common sense, IAQ 9.2
Communication, BSAR 1.2, 3.2; IAQ 9.1, 9.3
devices, TAB 11.23
technology, TAB 11.23
terminals, TAB 11.24
Comparative vibration of duct gauges, DCS 7.17
Complaints
form, IAQ A.14
management climate, IAQ 1.4
perceived conditions, IAQ 1.3
physiological strain, IAQ 1.4
response, OBUC 6.1
temperature, IAQ 2.2
Complex stairwell pressurization, APP 9.39
Component losses, DD 5.1
Component Testing, FSDG D.1, F.3
cautions, FSDG D.2
Components, BSAR 8.9; KVS 3.4
accessory, KVS 6.5
and operation, KVS 8.1
and system equipment, KVS 6.4
deterioration of, KVS 8.1
kitchen ventilation, KVS 3.4
Composite material, FRP 1.1, 6.9
Compounds, organic, OBUC 2.2
Compressibility, TAB 2.19
Compression tank, APP 10.16; RCSI 4.7
Compressor, APP 2.8; TAB 9.12, 10.3
centrifugal, APP 11.15, 12.9
helical rotary, APP 10.10, 12.6
hermetic, APP 12.5
open, APP 12.5
reciprocating, APP 11.15, 12.5
rotary, APP 11.16, 12.5
screw, APP 12.6
semi-hermetic, APP 12.5
Compressor Short Cycling, TAB 10.3, 10.6
Computer, BSAR 2.9, 2.13, 2.14, 2.20; TAB 11.24, 11.24
control systems, APP 3.9
definitions, APP 3.39
facilities, BSAR 2.20
Concentrator, APP 12.13
Concrete, DD 12.6; KVS 3.2
slab, DCS 4.3
Condensate hoods, KVS 2.4
Condensation, TAB 2.9
Condenser, APP 12.7; TAB 10.3
air cooled, APP 12.8
double tube, APP 12.7
double-pipe, APP 12.7
shell and coil, APP 12.7
shell and tube, APP 12.7
water cooled, APP 12.7
water systems, APP 10.28; TAB 9.12, 15.7
Condensers, TABPG 5.7
Condensing units, DD 15.4
refrigerant, DD 15.4
Condition changes, TAB 2.11
Conditions, FGDC 2.1
Conductance (C), TAB 2.4
Conductivity (k), TAB 2.4
Conductivity, thermal, DD 15.4
Conical roofs, ASMM 6.50
Connection, FSDG 5.2, 5.4
breakaway, FSDG 5.6
duct to sleeve, FSDG 5.1, 5.3, 5.5
Connection in parallel, DD 15.4
Connection in series, DD 15.4
Connection levels, SEIS 2.1, 2.2
Connection types, SEIS 2.3
Connections, See Also Fabrication of fittings; FGDC 4.11, 5.13; IDC 15; RCDC 8.1
beaded sleeve, IDC 16
butt welded, IDC 16
draw band, IDC 16
flexible, IDC 21
rectangular, IDC 17
riveted, IDC 16
round, IDC 17
van stone, IDC 18
Constant
mass flow, TAB 5.16
volume, TAB 5.14
Constant airflow, TAB 6.1
Constant Fan VAV Box, TAB 14.12; TABPG 4.12
Constant return volume air fan, APP 2.27
Constant velocity method, DD 4.4
Constant volume system, APP 2.27, 10.23; TAB 14.14
Constant Volume Systems, TABPG 4.14
Construction, See Materials, See Louvers; ASMM 7.270
assembly and fitup, GSSC 5.1
bolted connections, GSSC 5.1
erection, GSSC 5.1
fabrication and installation, GSSC 5.1
Guidelines (EPA), IAQ C.2
managing process (IAQ), OBUC 4.1
sampling facilities, GSSC 5.2
standards, PVC 3
welding, GSSC 5.1
Construction and installation, KVS 1.1
Contact Molding, FRP 5.1, 5.9, 6.1, 7.1, D.3, D.6
Containment, biohazard, APP 9.30
Contaminant(s), BSAR 6.1; ESAM 2.1, 5.8, 9.2, 18.3, 18.4, 18.5, 18.14, 18.15, 18.16, 19.2; IAQ 3.3, 10.11
building materials, IAQ E.2
carcinogenic, IAQ 2.1
cleaning products, IAQ 3.9
common List, IAQ E.3
control, APP 9.9
evaporation, OBUC 2.5
gaseous, IAQ 2.1, 5.1
health problems, types of, OBUC 2.5
HVAC Source, IAQ 3.1
impact on building occupants, OBUC 2.5
microbial, IAQ 2.1, 3.1, 3.7, 4.1, 5.2
movement, OBUC 2.3
occupancy, IAQ 6.11
organic, IAQ 5.1; OBUC 2.2
OSHA standards, OBUC 2.6
other, OBUC 2.3
particulate, IAQ 2.1; OBUC 2.2
radon, IAQ 2.1
sources, OBUC 2.1
synergy, IAQ 5.1
vehicle exhaust, IAQ 6.11
Contamination
chemical, IAQ 7.2
microbial, IAQ 7.2
Continuous strand roving, FRP 2.5, 3.1
Contract documents, TAB 12.1; TABPG 2.1
Contract services, IAQ 9.1
Contractor
responsibilities, LTM 2.1
Contracts, BSAR 8.10
Control, TAB 4.1
categories, TAB 4.2
devices, TAB 4.3
diagrams, TAB 4.5
loops, TAB 4.2
relationships, TAB 4.5
Control components, RCSI 9.1
space heating, RCSI 9.1
thermostat, RCSI 9.1
Control measures (IAQ), OBUC 3.1
depressurizing work area, OBUC 3.3
erecting barriers, OBUC 3.4
identifying, OBUC 4.2
pathway interruption, OBUC 3.3
pressurizing occupied space, OBUC 3.3
relocating pollutant sources, OBUC 3.4
selecting, OBUC 4.3
temporarily sealing building, OBUC 3.4
work practices, OBUC 5.1
Control strategies, IAQ 1.5, 4.3
Control system, BSAR 2.22; COM 1.2, 2.1, 3.1, 3.2, 3.4, IAQ 3.1; RCSI 9.2
(EMCS), energy management, APP 3.40
actions, APP 3.2
agent, APP 3.1
airflow, APP 3.6
and wiring systems applications, APP 3.20
basics, APP 3.1
calibration, COM 6.3, 7.5
chilled water coil, APP 3.25
clean room, APP 9.7
clock control, RCSI 9.2
closed loop, APP 7.19
components, APP 3.9
contamination, APP 9.9
cooling/humidity control, APP 3.25
cycle warm-up/cool-down, APP 3.22
dampers, DCS 2.15
defrost, APP 11.16
demand load controller, RCSI 9.2
design, APP 3.36
direct digital (DDC), APP 3.45
direct expansion coil, APP 3.26
dual duct, APP 5.8
electric heat, APP 3.33
temperature, APP 3.21
equipment auxiliary, APP 3.14
evaporative cooling, APP 3.27
face & bypass, APP 3.6
fan volume, APP 3.29
floating, APP 3.10
fluid flow, APP 3.5
gas-fired, APP 3.35
heat exchanger, APP 3.33
heating coil, APP 3.23
humidity, RCSI 9.2
hydronic, APP 3.4
hydronic heating system, APP 3.32
hydronic-zone, APP 3.33
IAQ, selecting, OBUC 4.1
induction, APP 8.10
inlet vane, APP 7.21
interlock relays, RCS 9.2
lighting, APP 3.44
local, APP 3.8
localized, APP 3.8
loops, APP 3.2
mixed air, APP 3.6
multizone, APP 4.5
open loop, APP 3.2, 7.19
optimum start/stop, RCSI 9.2
outdoor air, APP 3.20
pneumatic, APP 3.15
point, APP 3.3
preheat coil, APP 3.23
pressurization, APP 2.25
proportional, APP 3.3, 3.10
refrigeration system, APP 3.35
safety, COM 6.1, 6.2
sequence of, COM 6.1, 6.2, 9.6
sequences, COM 6.3
smoke, APP 9.35
static pressure, APP 3.20, 3.28, 7.30
systems, COM 6.3, 7.2, 9.5
temperature control problems, COM 1.1, 3.3, 9.5
terminal reheat, APP 6.4
three-way valve, APP 3.31
two-position, APP 3.10
types, APP 3.8
valves, differential pressure, APP 10.24

VAV, APP 7.30
VAV fan air volume, APP 7.18
VAV fan volume control, APP 7.20
VAV static pressure, APP 7.19
zone, APP 3.29
Control verification, TAB 13.3; TABPG 3.3
Controlled
area, APP 3.36
device, APP 3.1, 3.11
variable, APP 3.2; TAB 4.3
Controller, APP 3.10
boiler, APP 3.32
cooling tower, APP 12.17
differential, APP 3.3
electric, APP 3.14
liquid chiller, APP 10.11
non bleed, APP 3.18
pilot-bleed type, APP 3.18
pneumatic, APP 3.10, 3.14
pressure differential, APP 3.31
reverse-acting, APP 3.10
space, APP 3.36
step, APP 3.14
temperature setback, APP 3.37
variable frequency AC motor speed, APP 7.23
Controls, TAB 4.6
Convectors, APP 10.2; TAB 8.14
Conventional -low density, PVC 66
Conversion, IAQ B.2
of load units, RCDC 4.2
of steel tables to aluminum, DCS 1.31
Converters, APP 10.11
Cooking, FSDG B.1; IAQ 4.4
Cooling, BSAR 8.5; ESAM 1.1, 1.3, 1.6, 1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.2, 5.7, 5.8, 5.9, 5.10, 5.13, 5.14, 5.15, 5.16, 8.1, 8.3, 8.7, 9.1, 9.2, 10.1, 10.5, 10.6, 10.8, 10.10, 11.1, 11.2, 13.4, 13.5, 13.6, 13.7, 14.1, 15.1, 15.2, 15.3, 16.16, 16.17, 16.18, 16.20, 16.21, 17.2, 17.6, 17.7, 17.14, 18.1, 18.12, 18.13, 18.15, 18.16, 20.1, 20.3, 20.4, 20.5, 21.1, 21.3, 21.5; TAB 2.12
coil charts, DD 9.8, 9.9
counterflow airstreams, TAB 2.3
equipment, APP 2.8; RCSI 4.1
evaporative, DD 15.6
load, APP 4.4
section, APP 2.6
size, RCSI 2.13
tower systems, TAB 9.12
Cooling Coils, IAQ 3.7, 6.10, 10.5
Cooling Mode, TAB 15.11; TABPG 5.11
Cooling Systems, TAB 15.9; TABPG 5.9
Cooling towers, APP 2.9; IAQ 3.7, 6.9; TAB 8.8
approach, APP 12.14
controls, APP 12.17
direct contact, APP 12.15
piping systems, APP 10.29
systems, APP 10.29, 12.14
thermal capacity, APP 12.15
thermal performance, APP 12.14
types of, APP 12.15

Coping(s)
curved, ASMM 3.9
design data, ASMM 3.1
extruded, ASMM 3.20
flashing, ASMM 3.12
formed, ASMM 3.2, 3.3, 3.8, 3.14
joints, ASMM 3.14
limits, ASMM 3.4
locks, ASMM 3.5
seams, ASMM 3.6
walls
dual, ASMM 3.16
parapet, ASMM 3.18

Copper, MGW 2.23; RSMG B.2, C.2, C.8, C.9

Core area, DD 15.4
face area, DD 15.4
Corner closures, DCS 1.50; LAG 3.29
 box lock, DCS 1.51
 flanges, DCS 1.52
government lock, DCS 1.51
inside slip joint, DCS 1.55
pocket locks, DCS 1.51
slip and drives, DCS 1.50
standing seams, DCS 1.54

Corner construction, LAG 3.31
Corner guards, ASMM 8.30
Cornerstone boxes, ASMM 8.26
Cornice, RSMG 4.7
Cornices, ASMM 8.18, 8.20

Correction
 receiver room(sound), DD 11.43
 Correction Factor Table, TAB 2.8
 Correction factors, APP 14.19
 air density, DD 14.18, 14.57, 14.61

friction loss, DD 14.9
Correlation of work, PVC 50
 access, PVC 51
 cutting and patching, PVC 50
 electrical, PVC 50
 equipment foundations, PVC 51
 openings, PVC 50
 other contractors, PVC 50
 permits and licenses, PVC 51
 piping, PVC 4
 scaffolding, PVC 50
taxes, PVC 51
utilities, PVC 51

Corrosion, IDC 38; RNDC 1.2, 2.1, 3.2, 3.6, 3.7, 3.14, 3.15, 3.16, 4.6, 5.5, 9.34, 13.2, 15.27, 16.6
 allowance, FRP B.1
 barrier, FRP 3.1, 3.3, 7.1, A.7, A.9, B.1, D.2, D.5
 characteristics, PVC 77
corrosion control, FRP 1.1, 2.5
galvanic, ASMM 9.13
material comparison, PVC 72
operating temperature, PVC 73
resistance, FRP 1.1, 2.1, 2.2, 2.4, 2.5, 3.1, 7.7;
PVC 71
room temperature, PVC 72

Corrosive(s), DD 15.4
 compounds vs. PVC material, PVC 72, 77
vapors, DD 13.1

Corrosiveness, FGDC 2.1

Cost(s), See Also Estimating; DD 2.1; MGW 8.1
 annual, DD 2.1
 controlling, DD 2.3
 fittings, DD 2.6
 initial, DD 2.1
 installation, APP 1.2
 operating, APP 1.2; DD 2.1
 relative installed, DD 2.5
 system, APP 1.2
 variables, DD 2.1

Costing, BSAR 1.21, 1.22, 6.6
Counteraction (odors), APP 2.22
Counterflow, DD 15.4
Counters, FSE 6.1
Counting, particle, APP 9.13
Cover letter, BSAR 1.10
Cover plate, RSMG 1.15
Covering materials (sound), DD 11.30
Covers, ASMM 7.11
Criteria for PVC duct reinforcement
 rectangular duct, negative pressure, PVC xii
 rectangular duct, positive pressure, PVC xiv
 round duct, negative pressure, PVC xi
 round duct, positive pressure, PVC xii
tables, PVC xi
Critical applications, COM 8.1
Critical load, RCDC 4.3
Cross contamination, ESAM 17.11, 18.2, 18.5, 18.11, 18.15, 19.2, 20.2, 20.3
Crossbracing, FSE 2.6
table undershelf, FSE 2.7
Crossbroken duct, DCS 1.45
Cross-Flow Airstreams, TAB 2.4
Crosstab, FGDC 3.4
Cubicles, IAQ 4.3
Curves, pump, APP 10.14
Curves, system, APP 10.14
Customer, BSAR 1.4, 1.11, 8.17
Cut Edges, FRP 7.1
Cycle, DD 15.4
Cylinders, MGW 4.4
Cylindrical Duct (Round Duct), FRP C.1
D1.3, MGW 6.2
D9.1, MGW 6.2

Dalton’s Law of Partial Pressure, DD 15.4
Damage, KVS 4.1
 roof and building, KVS 4.1
Damper
 Operator, FGDC 6.8
 Volume, FGDC 6.8
Damper adjustments, TAB 13.7; TABPG 3.6
Damper Attachment, FSDG 5.1
 sleeve, FSDG 5.2, 5.3
Damper check, TAB 13.1; TABPG 3.1
Damper Orientation, FSDG 5.1
Damper setting, TAB 13.1; TABPG 3.1
Damper Styles, FSDG 7.2
Damper Types, FSDG 7.1

Combination, FSDG 7.4
 curtain, FSDG 7.1
 horizontal, FSDG 11.2
 smoke, FSDG 7.3
Damper(s). See Also specific damper types: APP 3.6, 3.6; DCS 2.16; DD 9.1, 9.6, 13.3; FRP 7.3, 7.6, 7.7, 9.2, 9.6, 9.7; IDC 68; KVS 3.1; PVC 21; RCSI 7.4, 10.3; RNDC 8.4, 9.4, 10.4, 11.8, 11.31, 11.43, 15.27, 15.31, 15.32, 16.2, 16.7; TAB 12.6
 and water-wash hood, KVS 6.3
 automatic, APP 3.13
 back-draft, PVC 21, 43; RCSI 7.4
 blade locking device, PVC 42
 bypass, APP 3.6
 characteristics, APP 3.7
 definition, KVS 2.13
 fire, PVC 21, 54
 leakage, APP 3.38
 locations, DD 10.3; PVC 53
 louver mixing, APP 3.13
 minimum outdoor air, APP 3.20
 modulating, APP 3.6
 multiblade, DCS 2.17
 operator, TAB 4.5
 opposed blade, APP 3.7; DCS 2.17
 outdoor air, APP 3.20
 parallel blade, APP 3.7
 problems, IAQ 4.2
 radiation, FSDG 9.2
 shop fabricated, DD 9.4
 single-blade, APP 3.13; DCS 2.16
 smoke, APP 9.43
 sound, DD 11.13
 tests, DD 5.2
 two-position, APP 3.7
 volume, PVC 21, 41; RCSI 7.4
Dampers, TABPG 2.6
Dander, IAQ 3.7
Data label, TAB 13.8; TABPG 3.8
Data, Recording, TAB 13.3; TABPG 3.3
Database, BSAR 2.10
Day-night thermostat, APP 3.11
DC motors, APP 7.23
DDC. See Direct digital control
Dead band control, APP 3.37
Dead Loads, RNDC 4.2, 4.4, 4.5, 4.9, 4.11, 5.1, 5.2, 5.5, 5.11, 6.6, 7.3
Decay rate, DD 15.5
Decibels (dB), DD 11.2
 combining, DD 11.2
Deck, ASMM 6.6
Deck discharge control, APP 5.9
Deck(s), RSMG 2.1
 plank, RSMG 2.5
 surface, RSMG 2.3
Definition, MGW 8.2, 11.1
Deflection, FGDC 2.1
Defrost control, APP 11.16
Degree days, DD 15.5; ESAM 13.5
Degree of saturation, TAB 2.9
Dehumidification, DD 15.5; ESAM 4.7, 5.7, 16.16, 16.17; TAB 2.12
reset, APP 3.30
Delamination, FRP 3.3, 7.1, D.2
Demographic, IAQ 1.1
Demonstrating, COM 5.2, 6.3, 7.1, 7.3-7.7, 8.1
Density, DD 5.4; TAB 5.14
change, TAB 5.16, 5.18
measuring, TAB 13.12
Density effect, DD 5.5
Density, Measuring, TABPG 3.12
Dependent - Independent Boxes, TAB 6.3
derated coils, DEHG 3.2
desiccants, dehumidification, APP 9.15, 9.17
Design, ASMM 1.51; GSSC 3.1; KVS 1.1, 2.11, 5.1; MGW 5.2
comparisons, DD 7.22, 8.22
concepts, COM 7.2
conditions, DD 3.3
criteria, COM 3.1
details, typical (Figure), GSSC 3.6
fundamentals, DD 7.1, 8.1
hydronic, APP 10.27
intert, COM 2.1, 3.1, 3.2, 6.1, 6.3, 7.1, 7.2
ladder installation, GSSC 3.3
limitations, GSSC 3.1, 6.1
methods, DD 4.3
objectives, DD 7.1, 8.1
openings, stack, GSSC 3.5
reinforcement, GSSC 6.5
reinforcement (Figure), GSSC 3.8, 6.6
phases, COM 4.1, 5.3, 7.1, 7.2
point, DD 5.3
procedures, DD 3.4, 7.2, 7.15, 8.2, 8.15
professional, SEIS 1.1, 2.1, A.1, B.1
requirements, FRP 7.2
responsibilities, LTM 2.1
space, APP 1.4
system, DD 10.5
temperatures
difference, RCSI 2.2
velocity, DD 9.14
working pressure, DD 15.5
Design airflow volume, TAB 5.19
Design Fire, FSDG F.1
Design for Bending, RNDC 4.6, 5.5, 6.1, 7.15, 7.22, 7.29, 11.4
Design for Negative Pressure, RNDC 4.7, 5.7
Design for Positive Pressure, RNDC 4.6, 5.6
Design of Bolts for Flanged Joints, RNDC 4.8, 5.9
Design of Circumferential Stiffeners, RNDC 4.7
Design of Flanged Joints, RNDC 4.8, 5.9
Design Range, TAB 9.9
Details
backsplash, FSE 2.4
dew point, TAB 2.9
deviation, APP 3.4
dew point, TAB 2.8
temperature, TAB 2.11
apparatus, DD 15.5
dial thermometers, TAB 11.17
differential, APP 3.19; DD 15.5
temperature, APP 3.3
controller, APP 3.3

APP	HVAC Systems – Applications Manual
ASMM	Architectural Sheet Metal Manual
BSAR	Building Systems Analysis & Retrofit Manual
COM	HVAC Systems Commissioning Manual
DCS	HVAC Duct Construction Standards Metal and Flexible
DD	HVAC Systems Duct Design
DEHG	Ducted Electric Heat Guide for Air Handling Systems
ESAM	Energy Systems Analysis and Management
FGDC	Fibrous Glass Duct Construction Standards
FRP	Thermoset FRP Duct Construction Manual
FSDG	Fire Smoke and Radiation Damper Guide for HVAC Systems
FSE	Food Service Equipment Fabrication and Installation Guidelines
GSSC	Guide for Steel Stack Construction Indoor Air Quality – A Systems Approach
IAQ	Accepted Industry Practice for Kitchen Ventilation Systems and Guidelines
IC	Accepted Industry Practice for HVAC Air Duct Leakage Test Manual
KVS	HVAC Air Duct Leakage Test Manual
LTM	The Manager's Guide for Welding
OBUC	IAO Guidelines for Occupied Buildings Under Construction
PVC	Thermoplastic Duct (PVC) Construction Manual
RCDC	Rectangular Industrial Duct Construction Standards
RCSI	Residential Comfort Systems Installation Standards
RNDC	Round Industrial Duct Construction Standards
RSMG	Residential Sheet Metal Guidelines
SEIS	Seismic Restraint Manual – Guidelines for Mechanical Systems
TAB	HVAC Systems Testing Adjusting and Balancing
TABPG	TAB Procedural Guide
diffusional effects, APP 2.14
operating, APP 3.3
pressure control valve, APP 10.24
pressure element, APP 3.9
pressure switch, DEHG 6.1
Diffuse sound field, DD 15.5
Diffuser, FGDC 4.13
Diffusers, See Also Fabrication of fittings; DD 3.15
air, DD 15.5
air-light, TAB 6.13
ceiling, TAB 6.14
connections, DCS 2.19
mounted thermostats, APP 3.36
multi-passage ceiling, TAB 6.13
perforated face ceiling, TAB 6.13
room, DD 11.8
slot, TAB 6.13
variable area ceiling, TAB 6.13
Diffusional effects, APP 2.14
Digital Controllers, TAB 11.23
Digital in (DI), APP 3.45; TAB 4.8
Digital out (DO), APP 3.45; TAB 4.8
Diocyl phthalate (DOP) method, APP 9.5
Direct
acting, TAB 4.2, 4.3
acting controllers, APP 3.10
contact cooling tower, APP 12.15
control, APP 3.26
digital control (DDC), TAB 4.1, 4.10
expansion coil, APP 12.4
field, DD 15.5
fired units, APP 3.35
return system, TAB 9.3
Direct digital control, APP 3.45
interface, APP 3.46
operation, APP 3.45
Direct-Return, TAB 15.5; TABPG 5.5
Discharge ducts, IDC 9
Discharge stop valve, TAB 10.3
Discount rate, ESAM 23.2, 23.7, 23.8, 23.10, 23.11, 23.13
Dishtable, details of, FSE 9.3
Dishwasher
vapor exhaust, DCS 2.22
Dishwasher system, KVS 2.4
Dispersion, FRP 2.4
Display unit, FSE 7.1
Dissimilar metals, ASMM 9.13
Distributed processing systems, APP 3.42
District Heating Systems, TAB 9.14
District stream, APP 2.8
Diversified Pressure Dependent Systems, TABPG 4.6
Diversified Pressure Dependent Systems, TAB 14.6
Diversity, APP 7.26
Diversity factor, TAB 14.1; TABPG 4.1
Diversity Systems, TAB 14.5; TABPG 4.5
Diverted flow section, DD 5.18
Diverter, ASMM 1.51
Diverting valve(s), APP 10.24; TAB 4.3
three-way, APP 3.13, 3.17
Divided-flow fittings, DCS 2.7; DD 5.17
DMA, FRP 2.3, 2.4
Documentation, COM 1.1, 2.1, 3.1, 3.2, 4.1, 4.2,
5.2, 5.3, 6.2, 7.2, 7.5, 7.6, 9.1-9.6; FSDG D.2; IAQ
8.6, 9.1, 11.5
DOE, BSAR 1.24, 2.4, 8.1
Domes, ASMM 6.47, 9.34-9.36
Domestic Hot Water, BSAR 2.15; ESAM 1.3, 1.4,
1.6, 5.4, 7.1, 7.2, 7.4, 8.7, 10.7, 10.8, 21.1, 22.4,
22.5
Doors
access, DCS 2.12; FSDG 8.1
draft, RSMG 2.1
entry, RSMG 8.1
fire, FSDG 8.1
installation, FSDG 8.2
Doors and Openings, LAG 3.41
DOP efficiency, APP 9.5, 9.12
Doppler, TAB 15.1, TABPG 5.1
Dormer(s), RSMG 4.3
Double
bundle heat recovery, APP 13.4
draft, FSDG 8.1
pipe condenser, APP 12.7
seated valve, APP 3.11
tube condenser, APP 12.7
Double Span, LAG 2.10
Down discharge, KVS 2.6
Downspout, ASM 1.1
gages, ASMM 1.68
gutter connections, ASMM 1.73
hanger, ASMM 1.75
manufactured, ASMM 1.69
shop fabricated, ASMM 1.71
Downspout(s), RSMG 1.2, 1.3, 1.29
joints, RSMG 1.29
manufactured, RSMG 1.31
Downstream, See Heater location
Downstream System, TAB 14.6; TABPG 4.6
Downstream, Velocity Pressure, TAB 2.22
Draft, DD 3.2, 15.5
Draft Stop, FSDG 2.1
Draftiness, IAQ 2.1
Drain pans, IAQ 3.7, 6.10
Drainage, ASMM 1.1; FRP 2.4, 7.8, 9.2, D.6
factor, ASMM 1.7
Drains, FRP 7.7, 9.7; PVC 21; TAB 9.5
location, PVC 54
Drapery pockets, ASMM 8.38
Draw through system, APP 4.4
Drift, APP 3.4
Drive
arrangements, TAB 5.8
design, TAB 5.10
installations, TAB 5.10
Drive guards, DCS A.35; DD 6.16
Droop, APP 3.4

Dry
expansion coil, APP 12.3
media filters, APP 2.16

Dry air, TAB 2.6
cooler exchangers, APP 12.19; ESAM 20.2
evaporative cooler, APP 12.18; DD 9.13

Dry Bulb, TAB 2.8
room, DD 15.6
temperature, ESAM 2.4, 5.7, 5.8, 5.14, 10.6, 10.9, 20.4; TAB 2.8

Dry Spots, FRP 7.1, 7.9

Dryer venting, RCSI 10.5

Dual
path (air) systems, DCS A.30
room thermostat, APP 3.10
temperature water system, APP 10.18

Dual, Duct Terminal Boxes, TAB 6.2

Dual duct
central station apparatus, APP 5.3
control systems, APP 5.8
design, APP 5.7
dual-fan VAV, APP 7.6
high velocity system, APP 5.2
low velocity system, APP 5.2
systems, APP 5.1; TAB 7.5, 14.14
terminal units, APP 5.4
thermostat, APP 3.10
VAV systems, APP 7.5

Dual Function Tachometer, TAB 11.16
Dual Temperature Water System (DTW), TAB 9.1

Dual, Duct System, TABPG 4.14
Dual-Path Systems, TAB 7.1

Dual-Temperature, TAB 15.9; TABPG 5.9

Duckwork, and installation, KVS 6.2

Duct, See Rectangular duct, See Round duct, See Also Flanges, See Also Transverse joints, See Also Vibration, See Also Flexible liner, See Duct reinforcement, See Also Duct construction, See Also Sealants, See Also Dampers; DD 15.6; FSDG 5.4, B.1, F.3

16 gauge, DCS A.28
18 gauge, DCS A.27
20 gauge, DCS A.26
22 gauge, DCS A.25
24 gauge, DCS A.24
26 gauge, DCS A.23

access openings, PVC 21, 44, 53
acoustically lined, DD 11.34, 11.36
air leakage, DD 5.22
amount to be tested, LTM A.8
approaches to outlets, DCS 2.18; DD 3.7
area table, LTM A.10
aspect ratio, DD 2.3
auxiliary equipment, PVC 21
beaded, DCS 1.74, 7.1, 7.16
bracing, SEIS 2.2
branches, DD 6.7
branches entering, main, DCS 2.8; PVC 17
circumference table, LTM A.10
cleaning, BSAR 1.1, 6.1; IAQ 10.4
commercial, IAQ 10.7
connection pressure losses, DD 6.1
connections, RNDC 11.58, 12.30, 12.31, 12.49, 12.50, 12.59, 13.7, 15.6, 15.30
construction, PVC 5; SEIS 3.1
construction materials, DD 12.1
criteria, RCDC 9.1
crossbroken, DCS 1.74, 7.1, 7.16
cross-sectional area, DCS A.11; RCDC 7.61
dampers, PVC 21, 53
design, DCS 1.3; RCDC 4.1; RCSI 5.3
branch duct takeoffs, RCSI 6.3
18 SMACNA Master Index

branch supply, RCS 6.4
charts (tables), DD 14.1
data, DD 5.1
flexible ducts, RCSI 7.3
fundamentals, DD 5.1
general approach, DD 3.7; RCS 6.3
grille and register selection, RCSI 6.5
hangers, RCSI 7.3
induction, APP 8.7
materials, RCSI 7.2
metal gauges, RCSI 7.1
procedures, RCSI 6.1
return air, RCSI 6.5
rules of design, RCSI 6.3
tables, APP 14.1; DD 14.1
dimension, FSDG 5.4
drains, PVC 21, 54
ductulator, RCSI 6.1
ductwork size, RCSI 6.1
connections, DCS 2.21; PVC 18, 38, 54
elbows, PVC 17
end caps, PVC 21
end reflection loss, DD 11.42
end taps, DD 5.29
fibrous glass, RCSI 7.1
fitting loss coefficients, DD 5.12
flanges, PVC 18
flat oval, DCS 3.11
flexible, DCS 3.15
formula derivation, RCDC 9.1
friction loss, DD 5.12
fume hoods, PVC 20, 55
rectangular, PVC 17; RCSI 7.1
round, PVC 17; RCSI 7.1
segmented, PVC 17, 29
sound, DD 11.36
tables and charts, DD 14.6
fitting loss coefficients, TAB 2.23
fittings, PVC 5
fixed corner, RCDC 7.37, 8.8
flexible, PVC 18, 38, 54
functional standards, DCS 7.1
gaskets, PVC 21
hangers and support, DCS 4.1; FRP 7.3; PVC 20; RCSI 7.5
heat gain, DD 4.4, 5.27
heat loss, DD 4.4, 5.27
hinged corner, RCDC 7.46, 8.11
hot gas/filler rod welding, PVC 16, 25, 28
installation standards, DCS 1.7; LTM 1.2
insulation, RCSI 2.13, 7.4
intermediate supports, RCDC 6.5
internal supports, RCDC 6.2, 6.4
joints, RNDC 8.4, 9.4, 10.4, 12.59, 15.3, 15.4
lagging, external, DD 11.29
leakage, BSAR 7.1; DD 2.4, 4.7; DD LTM 1.1; DD RCSI 7.6
leakage classifications, DD 5.23; LTM 4.3
leakage tests, DCS 1.9; LTM 1.4, 3.1, 5.1, A.8
lining, DCS 2.25; RCSI 7.4
load capacity tables, RCDC 7.59
loads, RCDC 4.1
longitudinal seams, DCS 1.66, 3.8; PVC 17
louvers, DCS 5.3; PVC 21, 45
material thickness, RCDC 4.5, 7.1
materials, DCS 1.8, 3.3; PVC 53
modifications, RCDC 6.1
narrowscope tables, DCS A.13
needs, IAQ 10.4
noise, DCS 7.12
obstructions, DCS 2.10
offsets, DCS 2.9; PVC 17, 33
outlet, DD 6.4, 6.5
outlet elbows, DD 6.4, 6.5
overpressure, DCS 1.7, 6.20, 7.6
panel load, RCDC 4.4
penetration, FSDG 11.2
performance requirements, DCS 1.3
pressure changes, TAB 2.21
pressure changes during flow, DD 5.11
pressure classification, DCS 1.6
pressure comparison by gauge, DCS A.23
pressure-velocity classification, DCS 1.4, 1.6
rectangular, PVC 5
rectangular (sound), DD 11.24
reinforcing data, RCDC 7.55
research, DD 5.28
roughness factors, DD 14.8
round, PVC 5
saddles, RNDC 13.8, 13.24, 13.25
seal class, DCS 1.9
sealing, BSAR 7.6; RCSI 7.6
sealing materials, DCS 1.11; LTM 1.5
sealing requirements, DCS 1.9; LTM 1.3
seaming leakage, DD 5.23
silencers, DD 11.37
size, RCDC 4.6
size/tolerance, PVC 5
sizing, DD 4.3; PVC 53
examples (metric), DD 8.4
examples (U.S.), DD 7.4
procedures (metric), DD 8.2
procedures (U.S.) units, DD 7.1
sizing examples, TAB 7.11
solvent welding, PVC 16
sound attenuation, DD 11.31
sound breakout, DD 11.23
spacing, RCDC 4.5, 7.59
squareness, PVC 5
static pressure, DCS 1.5
stiffeners, RCDC 4.5
supply, BSAR 7.2
support flashing, DCS 5.7
supports, DCS 4.2; PVC 20, 40; RNDC 13.19-13.21
surface area table, DCS A.7; LTM A.9
survey, BSAR 6.2, 7.1
symbols, DCS 1.1; DD 4.9
system, See Duct system; TAB 5.13, 5.14
table, RCSI 7.6
terminal devices (sound), DD 11.20
testing, BSAR 7.2; DCS A.22; LTM 3.1
tools, IAQ 10.9
transitions, DCS 2.9; PVC 17, 33
transverse joints, PVC 18
turning vanes, DCS 2.5, A.41; PVC 17, 32
underslab, DCS 3.23
unlined rectangular, DD 11.33
unlined round, DD 11.35
vacuum, IAQ 10.10
vanes, DCS 2.5
velocity, DCS 1.4
velocity pressure, DD 14.6
ventilator heads, DCS 5.9; PVC 21
vibration, DCS 7.12
wall thickness, PVC 5
Duct analysis, BSAR 1.1
Duct construction, See Also Reinforcement, See Seams, See Also Expansion joints, See Also Hangers, See Also Connections, See Also Ventilation system testing, See Also Supports; IDC 5; PVC 5
attachments, DCS 1.77; PVC 16
classification, DCS 1.6; IDC 5
connections, IDC 15
deflection limits, DCS 7.3
design, IDC 70
duct reinforcement, DCS 1.15; IDC 25; PVC 5
efficiency, PVC 24
equivalent, DCS 7.9
expansion joints, IDC 15
fittings, DCS 1.17; PVC 5
hangers, DCS 4.1; IDC 30
location, PVC 5
materials, DD 12.1; PVC 5
rectangular, IDC 8
reinforcement, IDC 25
requirements, DCS 1.7; LTM 1.2
rigidity, PVC 5
round, IDC 6
sheet metal gage, DCS A.2; IDC 6
specifications, DCS xiii; IDC 5
steel, PVC 26
supports, IDC 30
testing, IDC 74
transitions, PVC 24
type, PVC 5
Duct enclosures, KVS 3.2
Duct Liner, FSDG 5.12
Duct penetrations, KVS 1.2
Duct Rating, FGDC 2.2
Duct shaft enclosure, KVS 3.3
Duct System Checks, TAB 12.7; TABPG 2.7
Duct system(s), TAB 2.22, 14.17
airflow, DD 5.1
apparatus, DD 9.4
apparatus charts, DD 9.7
attenuation of, DD 11.31
classification, RNDC 2.1, 16.5
construction, DD 12.1
cost, DD 2.5
general requirements, DD 1.1
kitchen, DD 13.1
materials, DD 12.1
pressure class, DCS 1.6, 1.8
return air, DD 7.12
selection, DD 4.1
sizing procedures, DD 7.1, 8.2
special, DD 13.1
symbols, DCS 1.1
Duct traverses, TAB 13.7; TABPG 3.7
Duct wrapping, KVS 3.3
Ducts, TABPG 4.17
Ductwork, See Also Duct; IAQ 3.7; KVS 3.1, 8.1; TAB 12.7, 14.8; TABPG 2.7, 4.9
 inspection points, KVS 8.1
 sealing, DCS 1.8; LTM 4.3
 Type II, KVS 5.5
Durometer, FRP 7.3
Dust
 atmospheric, APP 2.12
 holding capacity, APP 2.14
Dust collection, TAB 13.8; TABPG 3.8
Dynamic
 insertion loss, DD 11.2, 15.6
 loss coefficient, DD 5.10
 losses, DD 5.12
Dynamic losses, TAB 2.22
Dynamic Suction Head, TAB 8.5

Earth heat source, APP 11.15
Earthquake, RNDCC 4.5, 5.3; SEIS 1.1
Earthquake Gas Valves, RCSI 11.8
Eaves, ASMM 6.27
Economics, DD 2.1
Economizer Cycle, TAB 4.6
Economizer(s)
 cycle, APP 3.20
Economy cycle, APP 3.20
Eddy current couplings, APP 7.22
Edge, MGW 5.4
Education, IAQ 1.5
Effect, DD 15.6; FSDG F.5
 of blades, DD 3.6
 stack, DD 5.8
 sun, DD 15.6
 surface, DD 3.5
 system, DD 5.6
 temperature, FSDG F.5
 wind, DD 5.8; FSDG F.5
Effect of Blades, TAB 6.9
Effective
 area, DD 3.1, 15.1
 draft temperature, TAB 6.6
 duct length, TAB 5.19
Efficiency
 filters, APP 2.12
Efficiency Curve, TAB 3.6
Elbow Equivalents, TAB 9.10
Elbow(s), DCS 2.3; PVC 17; RSMG 1.29
 configurations, other, DD 5.29
 oval, DCS 3.14
 press formed, PVC 30
 rectangular, DCS 2.3
 round, DCS 3.10
 segmented, PVC 29
square throat, PVC 31
Elbows
 90 Degree, FGDC 4.3, 5.11, 5.12
 Less Than 45 Degrees, FGDC 4.3
Electric
 coils, APP 3.24; KVS 4.6
 controls, APP 3.14; TAB 4.1
 electronic sensors, RCSI 9.1
 heat control, APP 3.33
 hydraulic actuator, APP 3.13
 motor, APP 3.12
 motors, TAB 3.1
 pneumatic controls, APP 3.14
Electric operators, TAB 4.5
Electrical, TAB 12.6; TABPG 2.6
 circuits, TAB 3.1
 contractors, FSDG 4.2
 data, TAB 12.2; TABPG 2.2
 demand limiting, APP 3.44
 diagram, TAB 3.1
 equations, metric, APP 14.20
 equations, U.S., APP 14.19
 resistances, TAB 3.1
 services, TAB 3.1
 systems, APP 3.8; BSAR 2.19; TAB 3.1
Electrical energy consumption, ESAM 13.4
Electricity
 generator, MGW 3.2
 inductance, MGW 3.3
 inverter, MGW 3.2
 NEMA, MGW 3.3
 rectifier, MGW 3.2
 shock, MGW 4.2
 sources, MGW 3.2
 transformer, MGW 3.2
Electro/pneumatic controls (EP switches), APP 3.14
Electrode(s)
 flux-cored, MGW 2.24, 2.25
 grinding, MGW 2.7
 ovens, MGW 3.9
 stainless steel, MGW 2.15, 2.27
 suggested, MGW 2.23
 tungsten, MGW 2.5
 type, MGW 2.2, 2.14
Electro-Hydraulic, TAB 4.2
Electronic
 controls, TAB 4.1
 filters, APP 2.17
 manometer, TAB 11.2
 tachometer, TAB 11.14
 thermometer, TAB 11.19
Electro-Pneumatic, TAB 4.2
Electrostatic effects, APP 2.14
EMCS
 communications, TAB 4.9
Energy. See Energy conservation, See Energy recovery, See Energy transfer

audit, BSAR 2.5, 2.9; ESAM 10.1, 10.2, 10.3, 10.4, 10.5, 10.7, 10.8
conservation, BSAR 4.4; ESAM 1.1, 1.3, 1.6, 1.7, 1.8, 1.9, 2.3, 2.4, 2.5, 2.6, 2.9, 3.1, 4.6, 5.1, 5.3, 5.11, 5.15, 8.1, 8.2, 8.7, 10.1, 10.2, 10.7, 10.8, 11.1, 11.2, 11.3, 13.6, 14.7, 14.9, 22.1; IAQ 1.1
consumption, BSAR 2.1; ESAM 1.1, 1.4, 1.8, 1.9, 2.1, 3.1, 4.6, 4.7, 5.6, 5.7, 5.11, 5.14, 5.15, 5.16, 7.2, 8.1, 8.2, 8.7, 9.2, 10.1, 10.2, 10.3, 10.4, 10.7, 11.2, 11.3, 13.5, 20.1; IAQ 1.3
control systems (EMCS), APP 3.40
electric, BSAR 2.10
heat, BSAR 2.10
management, BSAR 1.1, 2.4; ESAM iii, 1.3, 5.15, 11.2; IAQ 1.3; RCSI 9.2
management strategies, IAQ 1.3
psychometric calculation, APP 3.43
saving(s), BSAR 2.26, 7.9

Energy Management System (EMS) Diagrams, TAB 12.2; TABPG 2.2
Energy conservation, BSAR 4.4
control, APP 3.38
Energy control equipment, FSDG B.1
Energy cost-savings, COM 3.3, 9.5
conservation, COM 2.1
consumption, COM 9.2
Energy efficiency, KVS 2.16
Energy Management Systems (EMCS), TAB 4.7

Energy, see Energy conservation, see Energy recovery, see Energy transfer

audit, BSAR 2.5, 2.9; ESAM 10.1, 10.2, 10.3, 10.4, 10.5, 10.7, 10.8
conservation, BSAR 4.4; ESAM 1.1, 1.3, 1.6, 1.7, 1.8, 1.9, 2.3, 2.4, 2.5, 2.6, 2.9, 3.1, 4.6, 5.1, 5.3, 5.11, 5.15, 8.1, 8.2, 8.7, 10.1, 10.2, 10.7, 10.8, 11.1, 11.2, 11.3, 13.6, 14.7, 14.9, 22.1; IAQ 1.1
consumption, BSAR 2.1; ESAM 1.1, 1.4, 1.8, 1.9, 2.1, 3.1, 4.6, 4.7, 5.6, 5.7, 5.11, 5.14, 5.15, 5.16, 7.2, 8.1, 8.2, 8.7, 9.2, 10.1, 10.2, 10.3, 10.4, 10.7, 11.2, 11.3, 13.5, 20.1; IAQ 1.3
control systems (EMCS), APP 3.40
electric, BSAR 2.10
heat, BSAR 2.10
management, BSAR 1.1, 2.4; ESAM iii, 1.3, 5.15, 11.2; IAQ 1.3; RCSI 9.2
management strategies, IAQ 1.3
psychometric calculation, APP 3.43
saving(s), BSAR 2.26, 7.9

Energy Management System (EMS) Diagrams, TAB 12.2; TABPG 2.2
Energy conservation, BSAR 4.4
control, APP 3.38
Energy control equipment, FSDG B.1
Energy cost-savings, COM 3.3, 9.5
conservation, COM 2.1
consumption, COM 9.2
Energy efficiency, KVS 2.16
Energy Management Systems (EMCS), TAB 4.7

Energy, see Energy conservation, see Energy recovery, see Energy transfer

audit, BSAR 2.5, 2.9; ESAM 10.1, 10.2, 10.3, 10.4, 10.5, 10.7, 10.8
conservation, BSAR 4.4; ESAM 1.1, 1.3, 1.6, 1.7, 1.8, 1.9, 2.3, 2.4, 2.5, 2.6, 2.9, 3.1, 4.6, 5.1, 5.3, 5.11, 5.15, 8.1, 8.2, 8.7, 10.1, 10.2, 10.7, 10.8, 11.1, 11.2, 11.3, 13.6, 14.7, 14.9, 22.1; IAQ 1.1
consumption, BSAR 2.1; ESAM 1.1, 1.4, 1.8, 1.9, 2.1, 3.1, 4.6, 4.7, 5.6, 5.7, 5.11, 5.14, 5.15, 5.16, 7.2, 8.1, 8.2, 8.7, 9.2, 10.1, 10.2, 10.3, 10.4, 10.7, 11.2, 11.3, 13.5, 20.1; IAQ 1.3
control systems (EMCS), APP 3.40
electric, BSAR 2.10
heat, BSAR 2.10
management, BSAR 1.1, 2.4; ESAM iii, 1.3, 5.15, 11.2; IAQ 1.3; RCSI 9.2
management strategies, IAQ 1.3
psychometric calculation, APP 3.43
saving(s), BSAR 2.26, 7.9

Energy Management System (EMS) Diagrams, TAB 12.2; TABPG 2.2
Energy conservation, BSAR 4.4
control, APP 3.38
Energy control equipment, FSDG B.1
Energy cost-savings, COM 3.3, 9.5
conservation, COM 2.1
consumption, COM 9.2
Energy efficiency, KVS 2.16
Energy Management Systems (EMCS), TAB 4.7

Energy, see Energy conservation, see Energy recovery, see Energy transfer

audit, BSAR 2.5, 2.9; ESAM 10.1, 10.2, 10.3, 10.4, 10.5, 10.7, 10.8
conservation, BSAR 4.4; ESAM 1.1, 1.3, 1.6, 1.7, 1.8, 1.9, 2.3, 2.4, 2.5, 2.6, 2.9, 3.1, 4.6, 5.1, 5.3, 5.11, 5.15, 8.1, 8.2, 8.7, 10.1, 10.2, 10.7, 10.8, 11.1, 11.2, 11.3, 13.6, 14.7, 14.9, 22.1; IAQ 1.1
consumption, BSAR 2.1; ESAM 1.1, 1.4, 1.8, 1.9, 2.1, 3.1, 4.6, 4.7, 5.6, 5.7, 5.11, 5.14, 5.15, 5.16, 7.2, 8.1, 8.2, 8.7, 9.2, 10.1, 10.2, 10.3, 10.4, 10.7, 11.2, 11.3, 13.5, 20.1; IAQ 1.3
control systems (EMCS), APP 3.40
electric, BSAR 2.10
heat, BSAR 2.10
management, BSAR 1.1, 2.4; ESAM iii, 1.3, 5.15, 11.2; IAQ 1.3; RCSI 9.2
management strategies, IAQ 1.3
psychometric calculation, APP 3.43
saving(s), BSAR 2.26, 7.9

Energy Management System (EMS) Diagrams, TAB 12.2; TABPG 2.2
Energy conservation, BSAR 4.4
control, APP 3.38
Energy control equipment, FSDG B.1
Energy cost-savings, COM 3.3, 9.5
conservation, COM 2.1
consumption, COM 9.2
Energy efficiency, KVS 2.16
Energy Management Systems (EMCS), TAB 4.7
hydronic, APP 14.17; DD 14.56, 14.60
metric equivalents, DD 14.63
metric units, DD 14.58, 14.62
parameter, MGW 8.3
pump, APP 14.15; DD 14.55, 14.59
quick method, MGW 8.13
U.S. units, DD 14.54
Equipment, ASMM 6.41; SEIS 3.1
access to, APP 2.25
auditing, BSAR 2.23
auxiliary control, APP 3.14
booms, MGW 3.7
carbon arc, MGW 2.3
cooling, APP 2.8
flux-cored, MGW 2.10
gas metal arc, MGW 2.8
gas tungsten arc, MGW 2.6
heating, APP 2.7
HVAC apparatus, DCS A.31
identification, PVC 51
isolation, APP 2.7
mechanical, APP 2.7
miscellaneous, MGW 3.10
plasma arc, MGW 2.12
positioner, MGW 3.9
safety, MGW 3.10
seam, MGW 3.8
selection, RCSI 4.1
shielded metal arc, MGW 2.4
submerged arc, MGW 2.13
support flashing, DCS 5.7
tables, MGW 3.9
torches, MGW 3.7
turning rolls, MGW 3.8
venting, RCSI 10.1
welding, See Welding equipment
Equipment heat flow, TAB 2.5
Equipment pressure loss, TAB 15.1; TABPG 5.1
Equipment pressures differences, TAB 15.6; TABPG 5.6
Equipment selection, RCSI 4.1
Equipment service life, DD 2.6
Equipment venting, RCSI 10.1
Equivalent
duct diameter, DD 15.6
Equivalent length, TAB 2.22
Equivalent pipe length, TAB 9.10
Escalators, FSDG F.3
Estimating
cost, MGW 8.2
definitions, MGW 8.2
Evaluation, sample report, IAQ 11.6
Evaporation, TAB 9.15
Evaporative, DD 15.6
air conditioning, RCSI 1.3
cooling, DD 15.6
coolers, APP 3.27; RCSI 4.2
dry air (indirect), APP 12.18
indirect/direct, APP 12.20
pan humidifier, APP 3.27
slinger-type, RCSI 4.3
systems, APP 12.18
Evaporator, APP 12.4; TAB 10.2
shell and tube, APP 12.5
Evases, DD 6.1
Examples
exhaust air system, DD 7.12, 8.12
IAQ problems, OBUC 7.1
interpolation in stack design, GSSC 6.13
return air system, DD 5.11, 7.12, 8.12
sound (systems), DD 11.45
supply air system, DD 7.5, 7.16, 8.4, 8.16
Exhalation, IAQ 10.3
Exhaust, IAQ 3.1, 3.2, 4.1
air, KVS 1.2
air dampers, TAB 4.6
air inlet, TAB 6.14
air procedures, TAB 14.18; TABPG 4.18
air systems, ESAM 1.1, 2.3; TAB 14.16;
TABPG 4.16
covers, DCS 5.9, 5.10
example, DD 7.13, 8.13
fans, APP 2.29; RCSI 10.5
filtration, APP 9.25
hoods, TAB 14.18; TABPG 4.18
laboratory, APP 9.21
outlet, DD 3.18
systems, APP 9.22; DD 7.12, 8.12; RCSI 10.5
Exhaust Duct System, FSDG B.2
Exhaust duct(s), KVS 5.4
Exhaust fans, FSDG F.3; KVS 4.2; TAB 13.6;
TABPG 3.6
outlets, FSDG F.3
Exhaust hood, KVS 6.4
Exhaust terminations, KVS 6.4
Existing buildings, TAB 1.1
Existing installations, TAB 13.10; TABPG 3.10
Exit corridors, FSDG 11.2
Exit fittings, DD 5.10
Exothermic reaction, FRP 2.2
Expansion, ASMM 9.6
aluminum, ASMM 1.16
anchor, SEIS 2.1, 3.1, B.1
building, ASMM 5.1
copper, ASMM 1.16
gravel stop, ASMM 5.6
gutter, ASMM 1.16
groove, SEIS 3.3, B.1
roof, ASMM 5.2, 5.58, 5.10
roof-to-wall, ASMM 5.12
slab, ASMM 5.16
stainless, ASMM 1.16
tanks, ESAM 17.14
wall, ASMM 5.14
Expansion and contraction, LAG 2.15
Expansion joints, ASMM 5.2; IDC 15; LAG 3.25, 3.26, 3.27; PVC 19, 38; RNDC 7.19, 7.26, 8.4, 9.4, 10.4, 11.8, 11.31, 11.43, 15.27, 15.33, 15.34, 16.2, 16.8; SEIS 3.3
flexible, IDC 20
location, PVC 54
rectangular, IDC 19
round, IDC 19
Expansion of building materials, See Expansion joints
Expansion Space, FSDG 5.2, 5.3
Expansion tank, APP 10.16
Expertise
commissioning, BSAR 5.5
duct cleaning, BSAR 6.3
duct system analysis, BSAR 7.6
energy management, BSAR 2.22, 4.3
system operation/maintenance, BSAR 3.11, 8.15
Explosion doors, IDC 56, 58; RNDC 58
Explosive atmospheres, APP 15.28
Exposed duct installation, DD 3.15
Exposure, IAQ 1.1
limits, Washington state, IAQ C.2
Extended plenum, DD 4.4
method, DD 4.3, 8.15
sizing, DD 7.21, 8.21
Extended surface, DD 15.6
Exterior components, DCS 5.2
exhaust covers, DCS 5.2
intake covers, DCS 5.2
louvers, DCS 5.2
rectangular gooseneck, DCS 5.8
roof HVAC, DCS 5.6
screens, DCS 5.2
storm covers, DCS 5.9
Exterior surface, FRP 3.1, 3.3, 5.11, 7.1
External
drains, See Drains, See Rooftop ductinstallation, See Piping
lagging, DD 11.29
Extinguisher, MGW 4.3
Fabrication, FRP 1.1, 1.2, 2.1, 2.2, 2.4, 4.1, 5.1, 5.2, 5.9, 5.10, 6.1, 7.1, 7.9, 8.1, B.1, D.2
details, FSE 2.1
Face
and bypass control, APP 3.6
and by-pass dampers, ESAM 2.4, 4.2, 18.9, 20.3
area, DD 15.6
damper, APP 3.6
velocity, DD 15.6; TAB 14.17
Face Velocities, TAPBG 14.17
Facilities and services, IAQ 6.1
Facilities, computer, BSAR 2.20
building construction, IAQ 6.2
building related, IAQ 3.1
Facility managers, KVS 1.1
Factory accessories, DD 6.15
Fahrenheit scale, DD 15.6; TAB 2.1
Fan, FSDG B.1, F.3; PVC 55, 57
accessories, obstructions, DD 7.16
adjustment(s), TAB 13.2, 13.6; TAPBG 3.2, 3.6
air volume, TAB 5.10
airflow, TAB 5.10, 13.7; TAPBG 3.7
amperage, TAB 13.2; TAPBG 3.2
and ductwork, KVS 4.2
assisted box, TAB 6.2
axial, DD 6.16
balancing, IAQ 4.3
belt driven, KVS 4.1
belt guards, DCS A.31
belts, TAB 5.8
blades, KVS 8.2
boxes, DD 6.15; RNDC 15.36, 15.39
brake power, TAB 5.12
bypass, APP 7.24
capacity ratings, TAB 5.17
centrifugal appurtenances, DD 6.18
characteristics, KVS 4.1; TAB 5.1
check, TAB 13.1; TABPG 3.1
classes, TAB 5.4
coil, TAB 8.14
coil units, APP 10
conditions, DD 6.7; RNDC 15.36, 15.38
connections, DCS 2.21
construction, TAB 5.4
curves, TAB 2.25
dampers, DD 6.4
discharge position, DCS A.30
drive adjustment, TAB 13.6; TABPG 3.6
drive changes, TAB 13.2; TABPG 3.2
drives, TAB 5.9
exhaust air, APP 2.29
inlets, TAB 5.19
law relationships, TAB 5.14
laws, TAB 2.1, 2.25
manufacturers, KVS 5.5
modulation, return air, APP 2.28
motors, TAB 5.9
nomenclature, TAB 5.8
outlet
conditions, DD 6.1; RNDC 15.36, 15.40
diffusers, DD 6.1
ducts, DD 6.1
outlet velocity, TAB 5.12
outlets, TAB 5.19
performance, TAB 5.19
performance curve, TAB 5.14
powered boxes, TAB 6.2
powered VAV boxes, TAB 14.9
powered VAV terminal units, APP 7.14
pressure, DD 5.3, 5.10
pressure losses, DD 6.1
rating table, TAB 5.4
return, IAQ 4.3
return air, APP 2.4
room requirements, APP 2.23
rotation, DCS A.30
selection, TAB 5.19
single, APP 2.26
sizing, DD 4.7
sound, DD 11.12
speed changes, DD 5.3
static pressure (SP), TAB 5.12
static pressures, TAB 13.2; TABPG 3.2
supply air, APP 2.6
system, TAB 6.3
system curve relationship, TAB 5.13
terminology, DD 6.18
testing, TAB 5.17
testing procedures, TAB 13.1; TABPG 3.1
total pressure (TP), TAB 5.12
tracking, IAQ 4.3
variable pitch vane axial, APP 7.23
VAV supply air, APP 7.18
velocity pressure (Vp), TAB 5.12
volume, TAB 13.1; TABPG 3.1
volume control, APP 3.29
Fan Powered VAV Boxes, TABPG 4.9
Fascia, ASMM 1.63
cap, ASMM 2.10
corner, ASMM 2.20
design, ASMM 2.3
extruded, ASMM 2.22
joint, ASMM 2.8
porcelain enamel, ASMM 2.16
snap-on, ASMM 2.91
soffit, ASMM 2.5
Fastener
Fasloop Termination, FGDC 5.1
Locking Cap, FGDC 5.1
Pop Rivet, FGDC 5.1
Fasteners, FSDG 5.5; LAG 2.14
Fatigue, FGDC 2.1
FCAW, See Flux-cored arc welding
Federal government, BSAR 1.12, 1.22, 8.2
Feedback, BSAR 1.5
Feeders, MGW 3.5
Fiberglass duct, DD 12.6
Fiberglass Reinforced Plastic (FRP), DD 12.5
Fibers, IAQ 4-6
Fibrous glass ducts
installation, FSDG 5.13
Field
procedures, TAB 12.6; TABPG 2.6
readiness, TAB 12.6; TABPG 2.6
review, TAB 12.7; TABPG 2.7
Field checks, BSAR 2.14
Field Installation of FRP Duct, FRP 4.1
Field measurements, TAB 5.20
Field wrapped joints, FRP 4.11
Filament Winding, FRP 1.1, 2.1, 2.2, 2.4, A.7, D.2
Filler metals, MGW 2.23
Fillet, MGW 5.5
intermittent, MGW 5.6
Filter(s), DD 9.1, 15.6; ESAM 1.3, 2.2, 2.3, 2.5, 4.5, 4.6, 5.1, 5.3, 5.14, 9.1, 10.9, 10.10, 11.1, 14.10, 17.7, 17.10, 17.11, 17.14, 18.3, 18.9, 18.12, 18.15, 19.2, 20.3, 22.3; IAQ 3.3; KVS 2.4, 2.11, 2.13; PVC 55; RCSI 4.5; TAB 12.7, 14.17

adsorption, APP 2.21
diffusion, IAQ 3.5
direct interception, IAQ 3.5
electrostatic, RCSI 4.5
electrostatic force, IAQ 3.5
HEPA, APP 2.16
housing, APP 9.5
inertial deposition, IAQ 3.5
installation, APP 2.19
methods, IAQ 3.5
panel, APP 2.14
pressure loss data, DD 9.3
renewable media, APP 2.17
straining, IAQ 3.5
testing, IAQ 3.5
types, IAQ 3.6
wetted element, RCSI 4.5

Filter - drier, TAB 10.3
Filtering, RCSI 1.3
Filters, TABPG 2.7, 4.17
Filtration
clean room, APP 9.5
exhaust air, APP 9.25
Final design
data, DD 9.1
documents, DD 4.7
Financial, BSAR 1.16, 2.30, 3.18, 4.4, 5.7, 6.5, 7.8, 8.18
loss, IAQ 6.1
Finned tube radiation, APP 10.2; TAB 8.14
Fire and smoke
codes, DD 1.3
Fire and smoke control, FSDG D.1
test criteria, FSDG D.1
Fire and Smoke Damper, testing, FSDG 3.4

Fire and smoke dampers, KVS 1.2; TAB 12.7;
TABPG 2.7
Fire codes, KVS 2.14
Fire Damper, FSDG 2.1, 6.1, 12.1
approval, FSDG 5.1
evaluation, FSDG 2.1
horizontal, FSDG 5.11
improper installation, FSDG 5.7
installation, FSDG 3.3, 5.1, 5.2
multiple sections, FSDG 5.1
out of wall, FSDG 5.9
requirements, FSDG 2.1
sleeve, FSDG 2.1, 5.1, 5.2, 5.3
vertical, FSDG 5.8
Fire Endurance Ratings, FSDG 3.3
Fire losses, RCSI 11.2
Fire Rated
assembly, FSDG 11.2
eiling, FSDG 2.1
floor system, FSDG 11.2
partition, FSDG 2.1
Fire Resistance Directory, FSDG 3.4, 4.1, 11.4
Fire Resistance Rating, FSDG 5.1
Fire Resistant Partition, FSDG 3.3
Fire stopping, RCSI 10.6
Fire suppression system, FSDG B.1, F.3; KVS 2.4, 2.16
Fire Tests, FSDG 3.4
Fire Walls, FSDG 3.4, 3.3
Fireplaces, IAQ 3.6
Fire - resistive, FSDG 3.1
assembly, KVS 1.2
construction, FSDG 3.1
ratings, FSDG 3.1
requirements, FSDG 3.3
testing, FSDG 3.1
First cost, BSAR 1.18
Fitter section, APP 2.4
Fitting, FGDC 5.9

APP	HVAC Systems – Applications
ASMM	Architectural Sheet Metal Manual
BSAR	Building Systems Analysis & Retrofit Manual
COM	HVAC Systems Commissioning Manual
DCS	HVAC Duct Construction Standards Metal and Flexible
DD	HVAC Systems Duct Design
DEHG	Ducted Electric Heat Guide for Air Handling Systems
ESAM	Energy Systems Analysis and Management
FGDC	Fibrous Glass Duct Construction Standards
FRP	Thermoset FRP Duct Construction Manual
FSDG	Fire Smoke and Radiation Damper Guide for HVAC Systems
FSE	Food Service Equipment Fabrication and Installation Guidelines
GSSC	Guide for Steel Stack Construction
IAQ	Indoor Air Quality – A Systems Approach
IDC	Accepted Industry Practice for Industrial Duct Construction
KVS	Kitchen Ventilation Systems and Guidelines
LAG	Accepted Industry Practices for Sheet Metal Lagging
LTM	HVAC Air Duct Leakage Test Manual
MGW	The Manager’s Guide for Welding
OBUC	IAQ Guidelines for Occupied Buildings Under Construction
PVC	Thermoplastic Duct (PVC) Construction Manual
RCDC	Rectangular Industrial Duct Construction Standards
RCSI	Residential Comfort Systems Installation Standards
RNDC	Round Industrial Duct Construction Standards
RSMG	Residential Sheet Metal Guidelines
SEIS	Seismic Restraint Manual – Guidelines for Mechanical Systems
TAB	HVAC Systems Testing Adjusting and Balancing
TABPG	TAB Procedural Guide
Reinforcement, FGDC 5.8, 5.9
Transition, FGDC 5.16
Fitting(s), See Also Fabrication of fittings; DCS 2.1; IDC 70; RNDC 1.1, 4.4, 4.6, 8.4, 9.4, 10.4, 11.5, 11.8, 11.31, 11.43, 15.8, 15.11, 15.12, 15.13, 16.2, 16.5, 16.6
access doors, DCS 2.12
branch connections, DCS 2.8, 3.11
combined, DD 5.13
converging, IDC 71
divided -flow, DD 5.17
elbows, DCS 2.3; IDC 72
entering velocity, DD 8.8
entrance, DD 5.10
fan connections, DCS 2.21
griselle connections, DCS 2.18
liner fasteners, DCS 2.28
loss coefficients, DD 14.19
offset, DCS 2.9
pressure losses, DD 7.2, 8.3
register connections, DCS 2.18
round duct, DCS 3.1
tables, DD 7.2, 8.3
tee, DCS 2.7, 3.11
transition, DCS 2.9
Fixed blade grilles, TAB 6.12
Fixed corner, RCDC 7.37, 8.8
Fixed plate exchangers, APP 12.19; ESAM 17.6, 18.1, 18.2, 18.3, 20.2
Flame retardent, FRP 2.1, 2.2, 2.4, 3.1, D.2
Flammable vapors, DD 13.1
alternate, RCDC 8.7
angle, RCDC 8.7
assembly, PVC 35
attachment, PVC 18
bolting, DCS 1.63
channel, RCDC 8.7
dimensions, PVC 18
face, PVC 18
height table, RCDC 7.62
rectangular duct, PVC 36
requirements, FRP 7.2
Flapper, APP 3.19
Flapper-nozzle -bimetal assembly, APP 3.20
Flashing, KVS 6.5; LAG 3.9, 3.40; RSMSG 1.25, 1.34, 2.1, 2.5, 3.3, 4.3, 4.5, 4.9, 5.1
base, ASMM 4.14
chimney, ASMM 4.34
counter, ASMM 4.6
dormer, ASMM 4.42
equipment support, ASMM 4.32
gable, ASMM 6.33
general, ASMM 4.2
head sill, ASMM 4.42, 6.54
head wall, ASMM 6.31
hip, ASMM 4.129
installation, ASMM 4.4, 4.6, 4.10
ledge, ASMM 4.40
mansard, ASMM 4.24
penetration, ASMM 6.63, 6.65, 6.67, 6.69
pipes, ASMM 4.26, 4.28
rake, ASMM 6.33
ridge, ASMM 4.129, 6.31
roof, ASMM 4.38
saddle, RSMG 3.1, 5.1
shingle roof, ASMM 4.44
soffit, ASMM 6.53
structural steel, ASMM 4.30
stucco, ASMM 4.36
termite, ASMM 4.46
valley, ASMM 4.18, 4.20
wall, ASMM 4.109, 6.65
Flat drive joint, DCS 1.63
Flat lock, LAG 3.4
Flat oval circular equivalents, DD 14.14
Flat oval duct, DCS 3.11
construction standards, DCS 3.13
fittings, DCS 3.14
sound, DD 11.27
steel gauge schedule, DCS 3.13
Flat sheet, LAG 2.18
Flatback elbows, RNDC 15.10
Flexible connectors/connections, APP 10.17; FRP 7.7, 7.9, 9.7; PVC 18; RNDC 15.35, 15.37, 16.2, 16.8; TAB 9.6
construction, PVC 19, 37
defined, DCS 3.22
location, PVC 18, 54
material, PVC 18
support, DCS 3.19; PVC 19, 37
Flexible duct, See Flexible liner, See Flexible connectors/connections; DCS 3.15; IDC 13; RCSI 7.3
accessories, DCS 3.18
connectors, DCS 3.22
installation standards, DCS 3.15
joining specifications, DCS 3.17
support specifications, DCS 3.19
supports, DCS 3.20
types, DCS 3.16
wire reinforced, DCS 3.16; IDC 14
Flexible liner, DCS 2.25
fasteners, DCS 2.26, 2.28
installation standards, DCS 2.25
interruption, DCS 2.30
optional hat section, DCS 2.29
Flexible wraps, KVS 3.3
Float valve, APP 12.4
Floating action, APP 3.3
Floating control, APP 3.10
Flooded chillers, APP 10.10
Flooded coil, APP 12.4
Floor Plan
symbols, FSDG 10.3
Floor Plenums, TAB 6.13
Floor-Ceiling Assembly, FSDG 2.1
Flow
calculation, LTM A.11
characteristics, APP 3.5
coefficient, APP 3.5; LTM A.15; TAB 4.3
hoods, laminar, APP 9.30
measurement(s), TAB 15.1, 15.3
meters, LTM A.11, A.17, A.18; TAB 15.1
rates, hydronic design, APP 10.26
sensing, APP 3.10
Flow measuring hood, TAB 11.8, 11.9
Flow Meters, TABPG 5.1
Flow variation, TAB 15.9; TABPG 5.9
Flow, Measurement(s), TABPG 5.1, 5.3
Flow/pressure check, TAB 13.1; TABPG 3.1
Fluid
dynamics, TAB 2.20
equal percentage, APP 3.5
flow control, APP 3.5
linear, APP 3.5
mechanics, TAB 2.19
meter, LTM A.11, A.17, A.18; TAB 2.19
properties, TAB 2.19
quick opening, APP 3.5
statics, TAB 2.19
viscosity, TAB 8.12
Food service equipment, FSE 1.1
Forced air heating, RCSI 3.1
Forced air systems, RCSI 1.2
Forced convection units, TAB 8.14
Foreign inclusions, FRP 8.14
Formaldehyde, IAQ 4.1
material table, IAQ E.2
Formula derivation, GSSC 6.1; RCDC 9.1; RNDC 15.9, A.1
bolt-end stiffeners, RCDC 9.11
duct extension, RCDC 9.8
duct thickness, RCDC 9.2
factors of safety, GSSC 6.4
fixed-end stiffeners, RCDC 9.11
internal supports, RCDC 9.11
load criteria, RCDC 9.9
longitudinal compression, GSSC 6.3
longitudinal tension, GSSC 6.4
particulate material, RCDC 9.7
stiffener size, RCDC 9.5
support spacing, RCDC 9.7
thickness of stack shell, GSSC 6.2
Fouling, ESAM 4.6, 16.2, 17.5, 17.10, 17.11, 21.5
Four-pipe systems, APP 8.8, 10.21; TAB 9.4, 15.5; TABPG 5.5
FPM, FSDG E.1
Framing channels, RNDC 13.29-13.49, B.8
Freeze protection, ESAM 18.16, 18.17, 20.3
Freezing water, RSMG A.1, 1.2
Freons, See Refrigerants
Friction, TAB 2.21
Friction head, TAB 8.4
Friction losses, TAB 2.21, 2.23, 2.27
Front face discharge, KVS 2.6
FRP Guide Specifications, FRP 1.2
Fuel
emissions, IAQ 3.9
Full (Complete) Penetration Joint, RNDC 1.4, 8.4, 9.5, 10.5, 14.1, 17.6, 17.10
Full Load Amps, TAB 3.5
Fume
hoods, APP 9.26; BSAR 3.17; FRP 7.6; TAB 14.17

APP HVAC Systems – Applications
ASMM Architectural Sheet Metal Manual
BSAR Building Systems Analysis & Retrofit Manual
COM HVAC Systems Commissioning Manual
DCS HVAC Duct Construction Standards Metal and Flexible
DD HVAC Systems Duct Design
DEHG Ducted Electric Heat Guide for Air Handling Systems
ESAM Energy Systems Analysis and Management
FGDC Fibrous Glass Duct Construction Standards
FRP Thermoset FRP Duct Construction Manual
FSDG Fire Smoke and Radiation Damper Guide for HVAC Systems
FSE Food Service Equipment Fabrication and Installation Guidelines
GSSC Guide for Steel Stack Construction
IAQ Indoor Air Quality – A Systems Approach
IDC Accepted Industry Practice for Industrial Duct Construction
KVS Kitchen Ventilation Systems and Guidelines
LAG Accepted Industry Practices for Sheet Metal Lagging
LTM HVAC Air Duct Leakage Test Manual
MGW The Manager’s Guide for Welding
OBUC IAQ Guidelines for Occupied Buildings Under Construction
PVC Thermoplastic Duct (PVC) Construction Manual
RCDC Rectangular Industrial Duct Construction Standards
RCSI Residential Comfort Systems Installation Standards
RNDC Round Industrial Duct Construction Standards
RSMG Residential Sheet Metal Guidelines
SEIS Seismic Restraint Manual – Guidelines for Mechanical Systems
TAB HVAC Systems Testing Adjusting and Balancing
TABPG TAB Procedural Guide
laboratory, APP 9.25
performance criteria, APP 9.27
Fume Hoods, TABPG 4.17
Fumed silicas, FRP 2.4
Functional capabilities (software), APP 3.43
Functional problems, COM 3.1-3.3, 5.1, 5.2, 5.4, 6.1, 7.4
Functional Testing, FSDG D.1
Fundamentals, IAQ 1.1; TAB 2.1
Fungal contamination, IAQ 3.7
Fungi, IAQ 5.2
Furnaces, RCSI 1.1
Furnishings, IAQ 1.3, 6.8, 10.1, 10.11
Gage location, TAB 8.12
Gages, ASMM 6.9; TAB 9.6
Galvanized, DD 12.1
coatings, FSDG 12.1
thickness tolerances, DCS A.2
Gas, MGW 2.2
compressed, MGW 4.3
expansion factor, LTM A.16
fired heat control, APP 3.35
shielding, MGW 2.2, 6.3
Gas arc welding
tungsten (GTAW), MGW 2.5
Gas piping, SEIS 3.3
Gasket materials, FRP 7.3
Gaskets, PVC 18; RNDC 3.12, 3.13, 8.4, 9.4, 10.4, 11.8, 11.31, 11.43, 12.82, 12.83, 15.27, 16.6
Gates, RNDC 8.4, 9.4, 10.4, 11.8, 11.31, 11.43, 15.27, 15.30
Gauge, APP 10.17
composite tables, DCS A.13, A.14
Gel time, FRP 2.3, 2.4
General Air System TAB Procedures, TAB 14.1; TABPG 4.1
General Contractor, TAB 12.4; TABPG 2.4
General procedures, TAB 13.12; TABPG 3.12
General requirements, TAB 1.2
General TAB Procedures, TAB 14.3; TABPG 4.3
Glass
rigid fibrous, DD 12.6
Glass Fabric, FGDC 3.3
Glass pipe, SEIS 3.3
Glossary, APP 15.1; MGW 11.1; PVC 87
Glycol solutions, APP 10.31
_inhibited, APP 10.31
Glycols, FRP 2.1
Goal, BSAR 1.5, 1.6, 2.6
Gooseneck, rectangular, ASMM 8.2; DCS 5.8
Grade Markings for steel bolts, RNDC 12.64
Gradual switches, APP 3.14
Gravel stop-fascia
 adjustable blade, DD 3.17
applications, DD 3.12
connections, DCS 2.18
fixed blade, DD 3.17
lightproof, DD 3.17
stamped, DD 3.17
v-blade, DD 3.17
Gravity loads, SEIS 1.1
Grease, KVS 2.13
and containment, KVS 4.3
and drainage, KVS 4.2
filters, KVS 5.3
Grease duct enclosure, factory built, KVS 3.3
Grille, FGDC 4.12
Grilles, IAQ 6.10; RCSI 10.5
 adjustable blade, TAB 6.14
fixed, TAB 6.14
light proof, TAB 6.14
v-blade, TAB 6.14
Groove, MGW 5.4
Grooved Lockseam, RNDC 1.1, 1.3, 1.4, 8.1, 15.1, 15.2
Ground wire, TAB 3.3
Group of ducts, SEIS 3.2
GRP, FRP 1.1
Guards, drive, DD 6.16
Guide Specification, PVC 48; RNDC iii, 1.2, 1.3, 1.4, 16.1
Gun
position, MGW 2.11
spool, MGW 3.7
Gutter(s), See Expansion joints; ASMM 1.5; RSMG A.1, B.1, 1.2
 accessories, ASMM 1.55; RSMG 1.27, 1.28
at wall, ASMM 1.25
brackets, ASMM 1.30, 1.33
built-in, ASMM 1.15, 1.49, 1.53
clearance, RSMG 1.26
combination, ASMM 1.31
concealed, ASMM 1.37
expansion, ASMM 1.19, 1.21, 1.23
formed, RSMG 1.23
gage, ASMM 1.9
half, ASMM 1.7, 1.13, 1.47
half round, RSMG 1.8
hanging, ASMM 1.35
heavy, ASMM 1.27, 1.39
installation, RSMG 1.20
installations, ASMM 1.47, 1.48, 1.49, 1.53
length, RSMG 1.25
level, RSMG 1.4
metal, RSMG 1.23
ogee, ASMM 1.13
overflow, RSMG 1.2
rectangular, ASMM 1.6, 1.8
sizing, ASMM 1.5; RSMG 1.3
sloped, ASMM 1.7, 1.41; RSMG 1.2, 1.4
straps, ASMM 1.30
styles, ASMM 1.11
supports, RSMG 1.4
Gypsum board, DD 12.6; KVS 3.2

Glossary

Halon, BSAR 8.11
Hand Lay-up, FRP 1.1, 1.2, 2.2, 2.4, 5.1, 6.1, 7.1, D.1, D.3
Handling, Shipping and Installation, FRP 7.9
Hanger bar, RNDC 13.7, 13.52, 13.53
Hanger rod, RNDC 13.4, 13.7, 13.52, 13.53
Hanger(s), IDC 30; KVS 6.4; PVC 20; SEIS 2.2
clamp, IDC 32
horizontal, PVC 39
rod, IDC 31
Hangers, FGDC 6.1, 6.2, 6.3, 6.4
Hangers and supports, RNDC 1.1, 1.2, 1.4, 3.12, 3.13, 4.2, 4.9, 5.11, 7.2, 9.4, 10.4, 11.8, 11.31, 11.43, 13.1, 13.2, 13.17, 16.2, 16.7, 17.10
Hanging systems, DCS 4.1
attachments to structures, DCS 4.3
Hard sell, BSAR 1.9
Hardness, Barcol, FRP 1.1
Hat bar, LAG 2.13
Hat channel, LAG 2.13
Hazard, MGW 4.5

Heat
assessment, OBUC 2.7
H-Bar, LAG 2.7
HCFC, ESAM 15.1, 15.2, 15.3
Head, TAB 8.1
Header box, LAG 3.46
Heads, TAB 2.27, 8.4
Health, IAQ 1.1, 1.6
complaints, OBUC 2.6
concerns, FRP 8.2
problems, IAQ 2.1
response, OBUC 6.1
WHO, IAQ 1.1

Heat exchangers
air-to-air, APP 11.2
air-to-water, APP 11.13
components, APP 11.15
design considerations, APP 11.7
types, APP 11.11
waste, APP 11.13
water-to-water, APP 11.13

Heat flows, TAB 2.1, 2.5, 2.5
Heat loads, RCSI 2.1

<table>
<thead>
<tr>
<th>APP</th>
<th>HVAC Systems – Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMM</td>
<td>Architectural Sheet Metal Manual</td>
</tr>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design</td>
</tr>
<tr>
<td>DEHG</td>
<td>Ducted Electric Heat Guide for Air Handling Systems</td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
</tr>
<tr>
<td>FSDG</td>
<td>Fire Smoke and Radiation Damper Guide for HVAC Systems</td>
</tr>
<tr>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
</tr>
<tr>
<td>GSSC</td>
<td>Guide for Steel Stack Construction</td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach</td>
</tr>
<tr>
<td>IDC</td>
<td>Accepted Industry Practice for Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>KVS</td>
<td>Kitchen Ventilation Systems and Guidelines</td>
</tr>
<tr>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Lagging</td>
</tr>
<tr>
<td>LTM</td>
<td>HVAC Air Duct Leakage Test Manual</td>
</tr>
<tr>
<td>MGW</td>
<td>The Manager’s Guide for Welding</td>
</tr>
<tr>
<td>OBUC</td>
<td>IAQ Guidelines for Occupied Buildings Under Construction</td>
</tr>
<tr>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
</tr>
<tr>
<td>RCDC</td>
<td>Rectangular Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RCSI</td>
<td>Residential Comfort Systems Installation Standards</td>
</tr>
<tr>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines</td>
</tr>
<tr>
<td>SEIS</td>
<td>Seismic Restraint Manual – Guidelines for Mechanical Systems</td>
</tr>
<tr>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing</td>
</tr>
<tr>
<td>TABPG</td>
<td>TAB Procedural Guide</td>
</tr>
</tbody>
</table>
Heat loss calculations, RCSI 2.3
 ceiling and roof losses, RCSI 2.5
 wall losses below grade, RCSI 2.5
 window and door losses, RCSI 2.3
Heat producing equipment, KVS 2.1
Heat pumps, ESAM 4.7, 4.8, 4.9, 5.6, 17.5, 21.2, 21.3, 21.5, 22.1, 22.2; RCSI 1.1; TAB 8.13
 EER, RCSI 3.7
 ground coupled, RCSI 3.7
 heat pump systems, RCSI 3.5
 application, APP 13.3
 chiller, APP 13.2
 hydronic, APP 13.1
Heat Responsive Link, FSDG 2.1
Heat stops, FSDG 2.2, 3.3, 11.4
 installation, FSDG 3.3
 performance, FSDG C.1
Heat transfer, TAB 2.1, 2.2, 2.4, 15.1, 15.9, 15.10; TAPBG 5.1, 5.9, 5.10
 coefficient, DD 14.51
 rates, TAB 15.10
Heat transfer fluids, RCSI 11.4
 flow requirements, RCS 11.4
 materials, RCS 11.5
 safety precautions, RCSI 11.4
 water/glycol, RCSI 11.4
Heat Transfer Rates, TAPBG 5.10
Heat, and fume, KVS 2.4
Heated thermocouple anemometer, IDC 88
Heater coils, TAB 3.9
Heater location, DEHG 4.1
Heater position, DEHG 3.2
 horizontal, DEHG 3.2
 vertical, DEHG 3.2
Heater types
 flange, DEHG 1.1, 3.2, 5.1
 slip-in, DEHG 1.1, 3.2, 5.1
Heater(s)
 indirect fired, APP 3.35
 wire anemometer, IDC 88
Heating, BSAR 8.4; TAB 2.11
 charts, DD 9.7
 coils, DD 9.7
 control, APP 3.23
 equipment, APP 2.7
 perimeter, APP 7.28
 supplemental, APP 11.17
 systems, RCSI 3.1
Heating and cooling
 coil installations, DCS 2.12
 thermostat, APP 3.11
Heating and humidification, TAB 2.12
Heating and ventilation, DCS A.27
 blow-thru, DCS A.27
 draw-thru, DCS A.27
Heating mode, TAB 15.12; TAPBG 5.12
Heating tolerance, TAB 15.9; TAPBG 5.9
Height, See Stack height
Helical rotary, compressor, APP 10.10, 12.6
HEPA, BSAR 6.4; IAQ 10.9
HEPA filter, IAQ 10.6
HEPA filtration system, APP 2.16, 2.19, 9.4
Herbicides, IAQ 3.10
Hermetic compressor, APP 12.5
High efficiency particulate air (HEPA) filters, APP 2.16, 2.19, 9.4
High rise facilities, IAQ 3.7
High shear mixer, FRP 2.4
High side walls, DD 3.12
 installation, DD 3.13
High temperature water systems (HTW), APP 10.18; TAB 9.1
High Velocity System, TAB 7.7
Hinged corner, RCDC 7.46, 8.11
Hiring, MGW 10.2
Hiss (sound), DD 11.7
History, ASMM 9.32; IAQ 1.1; MGW 6.2
Hood(s), APP 9.30; ASMM 8.42; DCS 2.23; FSDG B.1, B.2; IDC 73
 balancing, TAB 13.7
 exhaust duct, DD 13.1
 eyebrow, KVS 2.11
 manufacturer, KVS 7.2
 performance, APP 9.26
Hood, Balancing, TAPBG 3.7
Hopper, LAG 3.58
Horizontal forces, SEIS 1.1, A.1
Hot gas bypass, TAB 10.4
Hot gas piping, APP 12.6; TAB 10.3
Hot patch, FRP 4.4, 4.6, D.3
Hot water
 boilers, APP 10.6
 Hot water procedures, TAB 15.8; TAPBG 5.8
 Hot-rolled shapes and plates, SEIS 3.1
 Household circuit, TAB 3.3
HSPF, RCSI 3.7
 heat pumps, RCSI 4.2
 performance, RCSI 3.6
 seer, RCSI 3.7
 thermostat, RCSI 9.2
 water-to-air, RCSI 3.7
 water-to-air heat pumps, RCSI 3.7
Hubless piping systems, SEIS 3.3
Humidification, TAB 2.12
evaporative pan, APP 3.27
water spray, APP 3.27
Humidifiers, RCSI 1.3, 4.5
installation, RCSI 4.7
room humidifiers, RCSI 4.6
Humidistat, TAB 4.6
Humidity, ESAM 1.1, 1.3, 2.1, 2.3, 2.4, 2.8, 2.9, 4.1, 4.4, 5.1, 5.3, 5.7, 5.9, 5.13, 5.14, 8.7, 9.1, 9.2, 10.6, 16.8, 16.12, 16.16, 16.17, 17.1, 17.2, 17.4, 17.5, 17.9, 17.10, 18.3, 18.4, 18.8, 18.15, 19.2, 19.3, 20.4, 22.1; IAQ 2.1
mold growth, IAQ 3.7
ratio, TAB 2.8
sensing elements, APP 3.9
HVAC, See specific type, Metric or U.S.; IAQ 6.9, 8.6, 10.1, 11.4
access, IAQ 10.6
checklist, IAQ A.4
clean room, APP 9.1
constant volume systems, IAQ 3.2
contractors, COM 1.1, 2.1, 2.2, 3.1-3.4, 4.1, 5.1, 5.2, 5.4, 6.1-6.4, 7.1, 7.3, 7.5, 7.6, 8.1; FSDG 4.2
design, APP 1.1; IAQ 3.1
ductwork, clean room, APP 9.8
equipment, ESAM 1.3, 5.4, 6.1, 8.13, 10.9, 14.2
equipment space, APP 1.5
fundamentals, TAB 2.1
heat pump systems, IAQ 3.2
manuals, APP 1.7
multizone systems, IAQ 3.2
parameter selection, APP 1.1
protection (IAQ), OBUC 3.1
systems, COM 1.1, 1.2, 2.1, 2.2, 3.1, 3.3, 4.1, 4.2, 5.2-5.4, 6.1-6.3, 7.1, 7.2, 9.2, 9.5; TAB 2.1
types, APP 2.1
unit connections, DCS A.28
unit ventilator systems, IAQ 3.3
variable air volume systems, IAQ 3.3
zoning, COM 1.2, 3.3, 5.3, 5.4, 6.3, 7.1, 9.1, 9.3-9.5
HVAC design of systems (sound), DD 11.9
equations, DD 14.54
sound spectrum, DD 11.11
system codes, DD 1.2
system loads, DD 3.18
systems library, DD 1.1
HVAC Duct Construction Standards Manual, KVS 6.4
HVAC equations - U.S., DD 6.48
HVAC equipment, TAB 12.1; TABPG 2.1
HVAC protection, See Also Control Measures (IAQ); OBUC 3.1
air cleaning, OBUC 3.3
changing work practices, OBUC 3.3
cover or seal, OBUC 3.3
indicators, OBUC 5.1
inspection checklist, OBUC A.9
liability, BSAR 4.2
local exhaust, OBUC 3.3
locating occupied areas, OBUC 4.2
managing construction, OBUC 4.1
manual, BSAR 6.1
modifying equipment op, OBUC 3.2
occupants, BSAR 4.2
particulates, OBUC 2.2
planning checklist, OBUC A.5
problems, classifying, OBUC 4.2
product substitution, OBUC 3.2
project documentation, OBUC 5.3
quality control, OBUC 5.1
references, OBUC A.1
resources, OBUC A.3
scheduling (construction), OBUC 3.5
source control, OBUC 3.2
standards, BSAR 4.1; OBUC 5.1
volatile organic compounds (VOCs), OBUC 2.2
HVAC related sounds, RCSI 5.1
HVAC System, TAB 12.2; TABPG 2.2
HVAC Systems Testing, Adjusting and Balancing Manual, KVS 7.1
and technical details, KVS 7.2
HVAC unit suspension, DCS 4.19
large duct support, DCS 4.13
lower attachments, DCS 4.9
rectangular duct, DCS 4.6
riser supports, DCS 4.14
round duct, DCS 4.8
trapeze loads, DCS 4.10
upper attachments, DCS 4.3
wall support, DCS 4.17
HVAC units, TAB 12.6; TABPG 2.6
Hybrid systems, APP 3.8
Hydrogen sulfide, IAQ 4.1
Hydronic, BSAR 3.16; ESAM 4.1, 4.2, 4.4, 4.6, 8.13, 10.11; TAB 2.26
air separation, RCS 11.1
balancing, TAB 11.11
coils, APP 3.21; DCS 2.11, 6.14
control, APP 3.4
design
flow rates, APP 10.26
procedures, APP 10.27
design (closed system), APP 10.25
design flow, RCSI 11.1
design procedures, RCSI 11.2; TAB 9.13
distribution, APP 3.30
equations, metric, APP 4.18
equations, U.S., APP 4.17
equivalents, APP 14.15, 14.15; DD 14.55
flow, APP 10.23
heat recovery, APP 13.1
heating systems
control, APP 3.32
piping, RCSI 11.1
piping devices, TAB 9.5
piping noise, RCSI 11.1
pressure drops, APP 10.26; RCSI 11.1
pressure losses, TAB 2.26
sizing, RCSI 11.2
system basics, TAB 2.26
system design, TAB 9.8
system losses, RCSI 11.2
system procedures, TAB 15.3
system(s), APP 10.1; TAB 2.27, 9.1
systems ready, TAB 15.3
tables and charts, APP 14.23
zone control, APP 3.33
Hydronic, Trouble Analysis Guide, TAB 9.8
Hydronic Systems Ready, TABPG 5.3
Hydronic, System Procedures, TABPG 5.3
Hydrostatic head, TAB 2.20
Hygroscopic, APP 3.9

IAQ
analysis, BSAR 7.8
audit, BSAR 4.2
classifying problems, OBUC 4.2
communications, BSAR 4.1
design criteria, COM 7.1
documentation, OBUC 5.3
duct analysis, OBUC 7.1
duct cleaning, BSAR 6.1
enforcing specifications, OBUC 5.2
example projects, OBUC 7.1
hazard assessment, OBUC 2.7
office, IAQ 1.1
reoccupancy, OBUC 5.2
surveillance, OBUC 5.1
IAQ defined
ASHRAE, IAQ 1.2
WHO, IAQ 1.1
IAQ management team, IAQ 11.5
IAQ policy, IAQ 11.5
IAQ problems, origins, IAQ 3.1
IAQ proposal, sample, IAQ 11.2, 11.3
IAQ proposals, IAQ 11.1
ICBO, FSDG R.1; SEIS 2.1
ICC, FSDG R.1
Ice, RSMG A.1, A.2, 1.2, 4.4, 1.11, 1.17, 1.20, 1.32
Ice dams, ASSM 6.29
Ice Load, RNDC iii, 4.1, 4.2, 4.4, 4.5, 4.6, 4.11, 5.1, 5.2, 5.3, 6.1, 6.6, 7.1, 7.3, 7.5, 7.9, 7.16, 7.23, 7.27, 7.29, 7.33, B.5
Illumination levels, ESAM 1.6, 8.2, 8.3, 8.4
Illuminations, FSDG 5.1
Image, BSAR 1.13
Impact resistance, FRP 2.2
Impaction, APP 2.14
Impingement, APP 2.14
Importance factor, SEIS A.1
Improvements, IAQ 4.4
Incident log, IAQ A.14
Increasers, DD 5.10
Incremental action, APP 3.34
Indirect fired heaters, APP 3.35
Indirect/direct evaporative cooling, APP 12.20
Indoor
See IAQ
air particulates, OBUC 2.2
air quality (IAQ), BSAR 1.1, 5.4; COM 1.1, 2.1, 3.1, 5.4, 7.1, 9.4; OBUC 1.1
criteria, COM 7.1
unitary equipment, APP 11.4
Indoor design temperature, RCSI 2.2
Induction
air-water, APP 8.2
central HVAC apparatus, APP 8.7
design, APP 8.5
duct design, APP 8.7
equipment, APP 8.3
non-changeover, APP 8.10
operation, APP 8.4
piping systems, APP 8.7
reheat systems, APP 8.1
systems, APP 8.1
terminal unit control, APP 8.12
units, APP 8.6
VAV systems, APP 7.7
VAV terminal units, APP 7.16
Induction Reheat Systems, TAB 7.4, 7.6
Induction Unit Systems, TAB 8.14, 14.14; TABPG 4.14
Induction VAV boxes, TAB 14.12; TABPG 4.12
Industrial duct, RNDC 1.1, 1.2, 1.3, 1.4, 2.1, 14.1, 14.2, 16.5, 17.1, 17.5, 17.6
classification, RCDC 2.1
definition, RCDC 1.1
material characteristics, RCDC 2.2
Industrial ventilation, TAB 13.12; TABPG 3.12
Inertia, Moment of, RNDC 4.2, 4.3, 4.4, 4.7, 4.8, 4.9, 5.1, 5.8, 5.11, 7.2, 7.3, 7.7, 7.11, 7.15, 7.18, 7.22, 7.24, 7.29, 7.31, 11.55, 12.2, 12.3, 12.4, 12.6, 12.12, 12.13, 12.14, 12.15, 12.16, 12.17, 12.28, 12.48, 12.56, 17.12
Infared, TAB 11.21
Infection, IAQ 5.2
Information sources, IAQ D.1, D.4
Ingestion, FRP 8.2
Inhalation, FRP 8.2
Initial planning, TAB 12.1; TABPG 2.1
Initial procedures, TAB 14.3; TABPG 4.3
Initial System Adjustments, TAB 15.4; TABPG 5.4
Initiators, FRP 2.1, 2.2
Inlet
 air types, DD 3.19
box, DD 6.15, 6.16
connections, DD 6.9
criteria, DD 3.17
duct vanes, DD 6.10
ducts, DD 6.7
elbows, DD 6.7
pressures, TAB 14.6
return air, DD 3.18
spin, DD 6.13
types, DD 3.17
vane control, APP 7.21; DD 6.17
Inlet Pressures, TABPG 4.6
Inline, KVS 4.2
Inner surface, FRP 4.1, 7.1, 7.3
Insects, IAQ 5.2
Insertion loss, DD 11.29, 14.72, 14.73, 15.9
Inside design conditions, RCSI 2.9
Inspection, See Weld Inspection; BSAR 8.4, 8.8, 8.9; FGDC A.3; FRP 2.4, 7.8, 7.9; FSDG D.1; IAQ 8.1; MGW 7.3
Inspections and cleaning, KVS 4.2, 6.3
Installation, See Unit installation
costs, APP 1.2
criteria, TAB 8.11, 8.12
Instrumentation, TAB 13.12; TABPG 3.12
Instruments for Air Balancing, TAB 11.17
Instruments, Selection of, TAB 13.12; TABPG 3.12
Insulation, IAQ 4.1; RCSI 11.5; RNDC 1.1, 3.12, 3.13, 4.2, 4.3, 4.11, 5.1, 5.2, 6.1, 7.3, 7.5, 7.13, 7.16, 7.20, 7.22, 7.27, 7.29, 7.33, 8.2, 8.3, 8.5, 8.24, 8.25, 8.54, 9.3, 9.5, 9.34, 10.3, 10.5, 11.9, 11.33, 11.45, 12.4, 12.13, 13.16, 13.54-13.85, 16.2, 17.3, 17.6, 17.8, 17.10, 17.11, 17.14, 17.15, B.6
intake covers, DCS 5.9
pins, LAG 2.6
refrigeration piping, RCSI 11.5
Intake covers, DCS 5.10
Interception, APP 2.14
Interconnecting ductwork, KVS 3.1
Interest, BSAR 1.19
Interior
layer, FRP 3.1, 7.3, D.1, D.4
shafts, APP 2.24
Interlock relays, DEHG 6.1
Internal
 centrifugal fan shrouds, APP 7.23
design, RCDC 6.4
discharge, KVS 2.8
heat, APP 2.4
 rate of return method, ESAM 23.4, 23.10
supports, RCDC 6.2
timers, APP 3.15
International Building Code, FSDG 3.1
International Code Council, FSDG 3.3
International Mechanical Code, FSDG 3.3
 construction documents, FSDG 3.3
International Training Institute (ITI), TAB 1.2
Interpretation, MGW vii
Interviews, IAQ 8.1
Intumescent, FRP 3.1
Investigation, test plan, IAQ 11.4
Investigative process, IAQ 6.8
Investment, BSAR 1.18; ESAM 1.8, 5.3, 5.4, 5.9,
 5.13, 5.15, 8.5, 10.1, 10.2, 10.4, 13.6, 14.1, 14.7,
 14.8, 14.9, 23.7, 23.8, 23.9, 23.10, 23.11, 23.12,
 23.13, 23.14, 23.15, 23.16
 return on, APP 1.2
Ionization Detector, FSDG E.1
Ionizing plate air cleaners, APP 2.18
Island hoods, KVS 6.4
Isolation
 devices, DCS A.36
 equipment, APP 2.7
Jacketing, LAG 1.1
Jet expansion, TAB 6.11
Joining duct, FRP 4.1, 4.4
Joint, FGDC 3.3
 Butt, FGDC 3.4
 Female, FGDC 3.5
 Male, FGDC 3.5
 V Groove, FGDC 3.5
Joint (s). See specific joint type, See Weld joints,
 Expansion, Expansion joints; FRP 4.1, 4.4, 4.5;
 FSE 2.1; IDC 14; RCSI 11.4; RSMG 1.4, 1.11, 1.13,
 5.6
 ball and socket, IDC 14
 basic, MGW 5.11
 bolted, FSE 2.2
 brazed, RCSI 11.4
 butt, FSE 2.2; MGW 5.12
 corner, MGW 5.14
 design, MGW vi
 penetration (percent), RNDC 4.2, 7.3, 7.10, 7.30
 rectangular duct, DCS 1.61
 round duct, DCS 3.9
 sealants, RNDC 8.4, 9.4, 10.4, 11.8, 11.31,
 11.43, 12.82, 12.83, 15.27, 16.6
 slip, IDC 14
 soldered, RCSI 11.4
 types, MGW 5.4
 welded, FSE 2.1
Joints and seals, LAG 2.15, 3.23
K
Kitchen Exhaust Systems, TAB 14.17; TABPG 4.17
Kitchen systems, DD 13.1
Knee brace hanger, RNDC 13.86, 13.87
Knee brace support, RNDC 13.1, 13.88, 13.89
Knurled Stud and Drive Plates, LAG 2.4
Laboratory
 exhaust systems, APP 9.21
 fume hoods, APP 9.25
 safety guidelines, APP 9.20
 supply air systems, APP 9.19
 systems, APP 9.18
Lagging, See Cladding; LAG 1.1
Laminar flow, APP 9.4
Laminate construction, FRP 1.2, 3.1, 3.3, 5.1, 5.9,
 6.2, 7.1, A.1, C.1, C.5
Laminates, FRP 2.1, 2.2, 2.4, 3.1, 3.3, 5.1, 5.2, D.1,
 E.1
Lap joint, LAG 3.24; RCDC 8.1; RSMG 1.15
Lap seam, LAG 3.4
Large Systems, TAB 9.2
Latent heat, ESAM 16.16, 16.19, 17.1, 17.2, 17.5,
 17.6, 17.7, 17.9, 17.10, 18.1, 18.2, 18.3, 18.4, 18.7,
 18.8, 18.10, 18.11, 20.4, 21.4; IAQ 2.2; TAB 2.12
Lateral bracing system, SEIS 3.1
Laws of thermodynamics, ESAM 16.1; TAB 2.5
 Lay-up procedure, FRP 4.4
Lead, See Copper; RSMG C.9
 radiation shielding, DCS 1.5
Leakage, BSAR 7.3; DD 2.4, 5.22
 analysis, LTM A.2, A.4
 classes, BSAR 7.4; DD 5.24; LTM 4.3, A.1, A.7
 classification, LTM 4.1, A.4
 factors, LTM A.7
 percentage, DD 5.25
 rate determination, LTM A.5
 rated dampers, APP 3.38
 rates, BSAR 8.16
Leakage testing, LTM 3.1, A.14
 equipment, LTM 5.1, A.11, A.17
 example, LTM 3.2
 precautions, LTM 3.1
 project specification, LTM A.6
 requirements, LTM 3.1
Ledge(s), RSMG 4.5, 4.7
Legionella, IAQ 3.7, 6.9
Level(s) (L), DD 11.3, 15.8
Liability concerns, IAQ 1.4
Life cycle, BSAR 1.21, 1.22
Life safety, APP 3.8
Light(s), BSAR 2.15
control, APP 3.44
level, IAQ 2.2
quality, IAQ 2.2
systems
heat, APP 7.1
troughs, ASMM 8.40
Lighting, ESAM 1.1, 1.3, 1.4, 1.6, 1.7, 1.8, 2.1, 2.2, 2.10, 5.3, 5.10, 5.13, 5.14, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 10.1, 10.6, 10.8, 11.2, 12.1, 12.3, 13.5; IAQ
Lighting fixtures, KVS 6.5
Lights, types of, KVS 2.14
Limit controls, TAB 4.2
Limitations, FGDC 3.3
Linear, APP 3.5
devices, APP 3.6
diffuser plenum, DCS 2.20
polyethylene, PVC 67
Linear Coefficient of Thermal Expansion, FRP 7.7
Lined duct acoustically (round), DD 11.35
Linkages, TAB 6.6
Liquid
chiller controls, APP 10.11
Liquid sight glass, TAB 10.3
Liquid solenoid valve, TAB 10.3
Listed components, KVS 1.4
Listed hoods, KVS 5.2
Listing agencies, KVS 1.3
Live Loads, RNDC 4.4, 4.9, 4.11, 5.1, 5.2, 5.11
Load calculation
considerations, DD 3.3
conversion, RCDC 4.2
cooling, APP 4.4
dead loads, RCDC 4.2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHG</td>
<td>Ducted Electric Heat Guide for Air Handling Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRP</td>
<td>Therset FRP Duct Construction Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSDG</td>
<td>Fire Smoke and Radiation Damper Guide for HVAC Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSSE</td>
<td>Guide for Steel Stack Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID:</td>
<td>Accepted Industry Practice for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KVS</td>
<td>Kitchen Ventilation Systems and Guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Lagging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTM</td>
<td>HVAC Air Duct Leakage Test Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGW</td>
<td>The Manager's Guide for Welding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBUC</td>
<td>IAQ Guidelines for Occupied Buildings Under Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCDC</td>
<td>Rectangular Industrial Duct Construction Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCSI</td>
<td>Residential Comfort Systems Installation Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEIS</td>
<td>Seismic Restraint Manual – Guidelines for Mechanical Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABPG</td>
<td>TAB Procedural Guide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
entries, DD 14.41
exits, DD 14.44
fitting loss calculator, DD 6.47
obstructions, DD 14.49
plates, DD 14.48
screens, DD 14.48
transitions, DD 14.24
Loss, material, IAQ 6.1
Losses straight duct, DD 5.12
Losses, area changes, DD 5.18
medical costs, IAQ 6.1
productivity, IAQ 6.1
Louvers, DCS 5.2; DD 9.9; FRP 7.7, 9.8; LAG 3.47;
PVC 21, 45, 56; RCSI 10.5
adjustables, ASMM 7.5
canopy, ASMM 7.21
construction, ASMM 7.3
design data, DD 9.15
enclosures, ASMM 7.16
extruded, ASMM 7.9
formed, ASMM 7.1
free area calculation, DCS 5.3
free area charts, DD 9.4
mullion, ASMM 7.12
penthouse, ASMM 7.18
screens, ASMM 7.14
sizing, DD 9.15
stationary, ASMM 7.1
sunshade, ASMM 7.20
systems
schedule, DCS 5.2
Low pressuresteam, APP 3.4
Low temperature
water system(s), APP 10.18
Low Temperature Water Systems (LTW), TAB 9.1
Low Velocity Systems, TAB 7.5
Lowered night temperatures, APP 3.37
LP Gas Tanks, RCSI 11.9

 Magazine, BSAR 1.14
Magnetism, MGW 2.2
Magnetic contactors, DEHG 6.1
Magnetic Starter, TAB 3.8
Main duct, TAB 2.25
Maintenance, BSAR 1.1, 8.1; COM 1.1, 3.1, 5.4, 7.2, 8.1, 9.2, 9.6; ESAM 1.1, 1.3, 1.4, 1.9, 2.1, 2.8,
3.1, 4.5, 5.1, 5.7, 5.12, 5.14, 5.15, 6.1, 6.3, 8.2, 8.3,
8.4, 8.7, 9.1, 9.2, 10.1, 10.2, 10.7, 10.8, 10.9, 11.1,
11.2, 11.3, 12.1, 12.2, 14.10, 15.3, 16.2, 17.12, 18.4,
18.9, 18.14, 18.16, 18.18, 19.4, 20.3, 20.6, 22.6,
23.4, 23.6, 23.8, 23.9, 23.11, 23.14; KVS 8.1;
RSMG B.1
cost(s), COM 1.1, 3.2, 9.5; DD 2.1

 instructions, HAC 4.8; IAQ 7.2, 8.6
program(s), COM 2.1, 3.3, 5.2, 6.3, 9.2
requirements, COM 2.1, 6.3, 7.6
scheduling, APP 3.44
Maintenance Load, RNDC iii, 4.1, 4.5, 4.6, 4.9,
4.11, 5.1, 5.4, 5.5, 6.1, 6.6, 7.1, 7.5, 7.8, 7.16, 7.23,
7.33, 8.3, 8.4, 8.5, 8.25, 8.54, 8.55, 9.3, 9.4, 9.5,
9.34, 9.35, 9.36, 10.3, 10.5, 10.34, 10.35, 11.7, 11.8,
11.9, 11.18, 11.20, 11.21, 11.30, 11.31, 11.33, 11.42,
11.43, 11.45, 11.54, 12.3, 12.4, 12.5, 12.13, 12.17,
12.22, 12.23, 12.58, 12.60, 13.16, 17.6, 17.8, 17.10,
17.15
Make-up air, KVS 1.3, 2.6, 2.8
direct fired units, KVS 4.6
duct systems, KVS 3.1
equipment, KVS 4.5
indirect fired units, KVS 4.6
unit types, KVS 5.6
Management, MGW 4.1
Management Information System, APP 3.44
Management team, IAQ 6.2, 6.6
Mandatory TAB Work, TAB 15.10; TABPG 5.10
Manifold, KVS 2.4
Manometer, LTM 5.1, A.12; TAB 11.1, 11.9
electrical, TAB 11.2, 11.9
inclined/vertical, TAB 11.1, 11.9
instrumentation references, LTM A.18
liquid properties, LTM A.17
U-Tube, TAB 11.1
Mansard, ASMM 6.41
Manual Calculation Process, RNDC 1.2, 8.1, 8.2,
8.4, 8.5, 8.54, 9.1, 9.2, 9.3, 9.5, 9.34, 10.1, 10.2,
10.4, 10.5, 11.1, 11.55, 12.58
Manuals, technical, See SMACNA publications
Manufacturers, BSAR 8.15; KVS 1.4
catalogs, TAB 12.1
instructions, FSDG 5.3
shop review, FRP 7.8
Manufacturer’s Catalogs, TABPG 2.1
Market, BSAR 1.4, 1.5, 5.1
Marketing, BSAR 1.1, 1.5, 1.7, 1.12, 2.22, 2.24,
3.12, 4.4, 5.6, 6.4, 7.7, 8.16
Masking (odors), APP 2.22
Mass, DD 15.8
Mass law (sound), DD 11.2, 15.10
Master, TAB 4.6
Mastic, FGDC 3.3
Material, PVC 4; RCDC 2.2
basic plastic compound, PVC 4
coating, MGW 6.3
extruded duct, PVC 5
requirements, MGW 6.3
rigid sheets, PVC 4
selection, PVC 59
specifications, IDC 4

Material Safety Data Sheets (MSDS), IAQ 10.11

Material thickness, RCDC 7.1
 class 1, RCDC 7.1
 class 2, RCDC 7.10
 class 3, RCDC 7.19
 class 4, RCDC 7.28
 load capacity tables, RCDC 7.59

Material types, RCDC 3.1
 aluminum, RCDC 3.1
 galvanized, RCDC 3.1
 stainless steel, RCDC 3.1

Materials, FRP 1.1, 1.2, 2.1, 2.2, 2.4, 7.1, 7.7, 9.6, D.4

Materials, decorating, IAQ 3.8

Maximum current, DEHG 3.1

Maximum fan airflow requirements, APP 7.26

Maximum wind load span, LAG 2.11

Maximum zone airflow requirements, APP 7.25

Measured voltage, TAB 3.1

Mechanical
draft towers, APP 12.16
equipment, APP 2.7
rooms, IAQ 3.7
space requirements, APP 2.23
systems, IAQ 4.2

Mechanical Codes, FSDG 3.1

Mechanical properties, FRP 2.2, 3.3, 5.1, 5.2, 5.9, 6.2, C.1, C.5

Mechanical seals, TAB 8.2

Media filters, APP 2.16

Medium density polyethylene, PVC 66

Medium Temperature Water Systems (MTW), TAB 9.1

MEKP, FRP 2.2, 2.3, 4.4

Metal, MGW 6.3
 application, ASMM 9.8
 roof, ASMM 6.24
 roof and wall design, ASMM 6.1
 specification, ASMM 9.8, 10.2

Metal inert gas, See Gas arc welding metal

Metal(s), RSMG C.13

Methods
 basic balancing, TAB 15.1; TABPG 5.1
 equipment pressure loss, TAB 15.2; TABPG 5.2
 hydronic, TAB 15.1; TABPG 5.1

Metric, ASMM 9.7
 conversion table, DCS A.5; RSMG C.7
 design, DD 8.1
 units, APP 14.21; ESAM 14.4, 16.1, 16.14, 16.17, 16.19, 16.20, 16.21, 23.2; TAB 11.24

Microbial, IAQ 10.1

MIG, See Gas arc welding metal

Minimum
 air quantities, APP 7.26
 outdoor air damper, APP 3.20
 temperature water system, APP 10.18

Misalignment of welded seams, RNDC 4.5.4, 5.4

Mites, IAQ 3.7

Mixed air control, APP 3.6

Mixed air temperature, APP 3.22; TAB 4.6

Mixing plenum, APP 2.3

| APP | ASMM | BSAR | COM | DCS | DD | DEHG | ESAM | FGDC | FRP | FSDG | FSE | GBSC | IAQ | KVS | LAG | LTM | MGW | OBUC | PVC | RCDC | RCSI | RSMG | SEIS | TAB | TABPG |
|-----|------|------|-----|-----|----|------|------|------|-----|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|------|------|------|------|-----|------|
Mixing valve(s), APP 10.24
three-way, APP 3.12, 3.17
Mixtures, TAB 2.17
Mode of operation, COM 6.2, 7.2
Model codes, FSDG 3.1; KVS 2.1
Modification equal friction method, DD 7.2, 8.2
Modified design method, DD 7.14, 8.14; TAB 7.10
Modified high-impact rigid PVC, PVC 66
Modular extractor, KVS 2.13
Modulating, TAB 4.6
control, TAB 4.4
Modulation, return air fan, APP 2.29
Modulus of Elasticity, RNDC 3.3, 3.4, 3.5, 4.3, 6.1,
7.3, 12.25, 12.62, 17.8, 17.9, 17.12, 17.13
Modulus of Elasticity Reduction Factor, RNDC 3.9,
3.11, 4.1, 7.2
Moist Air, TAB 2.6
Moisture, ASMM 9.30; FGDC 2.1; RSMG C.14;
TAB 13.12; TABPG 3.12
Moisture laden systems, DD 13.1
Mold, IAQ 3.7, 5.2, 6.11, 10.1
amplification, IAQ 5.2
growth odors, IAQ 3.8
spores, IAQ 3.8
tests, IAQ 3.8
Moment of Inertia, See Inertia Moment of
Motor(s), KVS 2.16; TAB 3.5
brake power, TAB 3.6
controls, TAB 3.8
locations, TAB 5.10
performance, TAB 3.6
starters, TAB 3.8
Movement air, APP 1.5
Moving curtain filters, APP 2.16
MSDS, IAQ 3.10
Mullions, FSDG 6.2, 6.3
damper, FSDG 2.2
Multiblade dampers, TAB 4.4, 6.5
Multiple
chiller system, APP 10.7
injection systems, APP 9.38
thermostats, APP 3.37
Multiple hoods, KVS 5.5
Multiple pumps, TAB 8.11
Multiple tower
chart, DD 9.12
exchangers, ESAM 17.5, 17.6
Multiple zone, TAB 9.7
Multipurpose occupancies, APP 1.2
Multistage thermostats, APP 3.11
Multi-story buildings, RCSI 3.3
Multizone
blow through system, APP 4.4
central station units, APP 4.3
control systems, APP 4.5

electric control, APP 4.6
equipment, APP 4.3; RCSI 4.2
multibzone equipment, RCSI 4.2, 4.2
pneumatic control, APP 4.6
system bypass, APP 4.6
system operation, APP 4.4
system(s), APP 4.1
Multi-zone systems, TAB 7.6, 14.13, 14.13; TABPG
4.13, 4.13
MYLAR, FRP D.5
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
<td>GSSC</td>
<td>Guide for Steel Stack Construction</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach</td>
</tr>
<tr>
<td>DD</td>
<td>Hvac Systems Duct Design Manual</td>
<td>IDC</td>
<td>Accepted Industry Practice for Industrial Duct Construction</td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Lagging</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
<td>LTM</td>
<td>HVAC Air Duct Leakage Test Manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGW</td>
<td>The Manager’s Guide for Welding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OBUCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PVC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RCDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RCSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RNDC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RSMG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TABPG</td>
</tr>
</tbody>
</table>

- Objectives, IAQ 9.3
- Observations, IAQ 8.1
- Obstructed inlets, DD 6.11
- Obstruction, DCS 2.11
- avoidance, DD 5.21
- Occupancies multi purpose, APP 1.2
- Occupancies single purpose, APP 1.2
- Occupancy Separation, FSDG 2.2
- Occupant(s), BSAR 4.5, 6.1, 8.3
- comfort, IAQ 1.3
- communicating with, OBUC 6.1
- complaints, COM 3.3, 5.4, 9.2, 9.3; COM IAQ 1.3
- discomfort, COM 1.1, 2.1, 3.1, 3.3, 5.4
- education (IAQ), OBUC 6.1
- egress, FSDG F.2
- productivity, COM 3.2, 3.3, 5.4
- responses, IAQ 1.3
- Occupational Safety and Health Administration (OSHA), KVS 2.14
- Occupied areas locating, OBUC 4.2
- Odor abatement, FRP 1.1
- Odor control, KVS 3.3, 3.4
- Odor(s), IAQ 2.3, 5.3
- external, IAQ 4.1
- human, IAQ 4.4
- masking, APP 2.22
- removal, APP 2.20
- sense of smell, IAQ 2.3
- sensitivities, IAQ 2.4, 3.9
- threshold, IAQ 2.3
- Offgas, IAQ 6.9
- Office equipment, IAQ 6.8
- Office of the State Architect (OSA), SEIS 2.1
- Offset, FGDC 4.4, 5.15
- Offset(s), DCS 2.10; DCS FGDC 2.8
- Ohm’s law, TAB 3.1
Oil pump, RCSI 11.8
Once-through systems, APP 10.29; TAB 9.12
One pipe system, TAB 9.3, 15.5
One pipe system (diverting fitting), APP 10.19
One-Pipe, TABPG 5.5
Opacity, KVS 3.4
Opaque, FRP 2.4
Open compressor, APP 12.5
Open loop control, APP 7.19; TAB 14.2; TABPG 4.2
Open system curve, TAB 8.8
Open systems, APP 10.15, 10.22; TAB 2.27, 8.9, 9.12
Opening protection, FSDG 11.4
Openings relief air, APP 2.2
Operating conditions, DD 9.6
costs, APP 1.2; COM 1.1, 3.1; DD 2.1, 2.2
differential, APP 3.3
pressure, DCS 1.6; DD 2.1
Operating controls, TAB 10.4
Operating manuals, TAB 12.2; TABPG 2.2
Operating speeds, TAB 8.4
Operation, BSAR 1.1, 1.3
Operation thermostat, APP 3.19
Operation, VAV terminal unit, APP 7.11, 7.17
Operational monitoring, COM 5.3, 6.3, 6.4, 7.7
Operations instruction, COM 2.1, 3.4, 5.2, 6.3, 6.4, 7.3-7.6, 9.6
Operators
damper, APP 3.13
Opportunities, IAQ 1.5
business, IAQ 1.5
contractors, IAQ 1.6
Opposed blade damper(s), APP 3.7; TAB 4.4, 6.5
Optical tachometer, TAB 11.14
Orange Peel Joint, LAG 3.8
Organic compounds, OBUC 2.2
Organic peroxides, FRP 2.2
Organisms, APP 9.30
Organophosphates, IAQ 3.10
Orifice, DD 10.5
coefficients, LTM 5.4
flow curves, LTM 5.5
flow rate table, LTM 5.6
plate, TAB 11.24
OSHA, BSAR 3.17, 6.4; ESAM 8.2, 8.3; IAQ 6.3, 8.6, 9.3, 10.4; KVS 6.1; MGW 4.3
OSHPD, SEIS 2.1, B.1
Outdoor air, APP 3.20
control, APP 3.20
damper, APP 3.20
intakes, APP 2.2
Outdoor equipment, RCSI 4.8
Outlet Balancing Procedures, TAB 13.5; TABPG 3.5
Outlet throw, TAB 6.10
Outlet tube(s), RSMG 1.27
Outlet(s), ASMM 1.53; DD 3.8; FSDG F.3
criteria, DD 3.11
duct elbows, DD 6.4
ducts, DD 6.1
exhaust, DD 3.18
Group A, DD 3.8
Group B, DD 3.10
Group C, DD 3.11
Group D, DD 3.11
Group E, DD 3.11
location, DD 3.8
on the same branch, DD 4.1
type selection, DD 3.3
velocity, DD 3.7, 15.9
Out-of-Roundness, RNDC 4.5, 5.4
Outside air, TAB 4.6
Outside air settings, TAB 13.2; TABPG 3.2
Outside design temperatures, RCSI 2.1
Overcrowding, IAQ 9.1
Overhang requirements, KVS 5.2
Overload protection devices, TAB 3.9
Overloading, MGW 2.7
Overpressure relief, APP 9.39
Owners, KVS 1.1
Ozone, APP 2.19; BSAR 8.11; IAQ 6.8

P

P3 facility/laboratory, APP 9.3
Packaged air conditioner, APP 11.2
Packaged equipment, APP 11.1
Packing glands, TAB 8.2
Paint, IAQ 4.1; IDC 40
application, IDC 52
color selection, IDC 46
considerations, IDC 47
cost, IDC 44
estimating amount, IDC 51
evaluation, IDC 46, 48
primers, IDC 42
sample specification, IDC 52
thickness, IDC 44
types, IDC 47
Panel(s), ASMM 6.35, 6.59, 6.61
filters, APP 2.14
Panel, Cheek, FGDC 5.11, 5.14
Fans, ASMM 6.9; RSMG 2.1
Pant fittings, RNDC 15.12
Pant-Leg, KVS 2.4
Paraffin wax, FRP 3.1, 4.1
Parallel, TAB 4.6
blade, TAB 6.5
blade dampers, TAB 4.4
circuits, TAB 3.1
flow airstreams, TAB 2.3
Parallel blade dampers, APP 3.7
Parallel chiller operation, APP 10.7
branches, DCS 2.8
Parallel flow, ESAM 2.1, 16.3, 17.4, 17.6, 18.11
air airstreams, TAB 2.3
Parallel type, TAB 14.10; TABPG 4.10
Parapet, ASMM 6.57
Partial Penetration Joint, RNDC 1.1, 8.4, 9.5, 10.5,
14.1, 14.2, 17.6, 17.10
Particle board, IAQ 10.11
Particle(s), APP 9.3
attachment, IAQ 3.4
counting, APP 9.13
density, IAQ 3.4
size, APP 2.13, 9.2
types, IAQ 3.4
Particulate(s), See Stack sampling facilities, See
Material (Particulate); IAQ 5.3, 10.1, 11.4
air, OBUC 2.2
airborne, IAQ 5.3
control, KVS 3.4
sampling, IDC 64
Partnering, COM 5.3
Pathways, IAQ 8.6
Patina, RSMG B.2
PAW, See Plasma arc welding
Payback, BSAR 1.16, 2.30, 3.18, 4.4, 5.7, 6.5, 7.8,
8.18; ESAM 1.5, 1.6, 1.7, 2.2, 2.8, 8.5, 10.1, 10.2,
10.3, 10.4, 12.1, 21.4, 23.1, 23.2, 23.4
period, BSAR 1.18
Penetrations, ASMM 6.35; FSDG 3.2; LAG 3.20
diagonal, FSDG 6.5
multiple, FSDG 6.4
Penthouse, ASMM 7.18
Perceived problems, IAQ 2.1
Percentage cycle repeater timers, APP 3.15
Perceptions, IAQ 3.10
Perfect gas, TAB 2.7

Performance
checklists, COM 1.1, 6.2, 6.3, 7.3-7.6
environmental, COM 2.1, 8.1
functional, COM 1.1, 2.1, 3.2, 4.2, 5.2, 5.3,
6.1-6.3, 7.3-7.6, 8.1, 9.2
operational, COM 5.2, 5.3
requirements, DCS 1.3
tests, COM 2.1, 3.2, 4.2, 5.3, 6.1-6.3, 7.3-7.6,
8.1, 9.2; KVS 5.7, 7.2
verification, COM 2.1, 3.4, 7.3-7.6, 8.1, 9.2,
9.6
Performance check, KVS 7.1
Performance contracting, ESAM 12.1
Performance criteria, KVS 3.1
Performance data, TAB 12.1; TABPG 2.1
Perimeter heating systems, APP 7.28
Perimeter installations, DD 3.12
Periodic sampling, IAQ 12.3
Pesticides, IAQ 3.9, 3.10
notification, IAQ 3.11
old, IAQ 3.11
Phantom System Curve, TAB 5.19
Phase change materials, APP 13.8
Photoelectric Light Obscuration Detector, FSDG E.1
Photoelectric Light Scattering Detector, FSDG E.1
Physical Properties, RNDC 1.2, 1.3, 3.3, 3.4, 3.5,
3.6, 3.10, 7.10, 7.17, 7.23, 7.30, 12.2, 12.6, 12.12,
12.14, 12.15, 12.16, 12.18-12.20, 12.82, 16.6, 17.8,
17.12
Pilot piston valve, APP 3.11
Pilot-bleed type controller, APP 3.18
Pimples, FRP 3.3, 7.1
Pinholes, FRP 3.3
Pipe
balance fittings, RCSI 4.8
bracing, SEIS 2.3
drains, RCSI 4.8
friction loss, RCSI 11.3
gas furnaces, RCSI 11.7
hot gas, RCSI 11.5
insulation, RCSI 11.5
liquid line piping, RCSI 11.6
material, RCSI 11.3
oil, RCSI 11.8
piping, RCSI 4.7
refrigerant, RCSI 11.5
sizing, RCSI 11.5, 11.7; TAB 9.13
suction line, RCSI 11.6
Pipe Lock Grooved Seam, RNDC 8.1, 10.1
Piping
circuit, TAB 3.1
hot gas, APP 12.6
induction, APP 8.7
noise, RCSI 11.1
refrigerant, APP 14.29
steam, APP 14.25
suction, APP 12.5
systems, TAB 2.26
water, APP 14.23
Piping classifications, TAB 9.1
Piping connections, TAB 9.17
Piping designations, TAB 9.15
Piping System, TABPG 5.1
Piping System Balancing, TAB 15.1, 15.4; TABPG 5.4
Pitch, DD 15.9; TAB 9.6
Pitot Tube, TAB 5.18, 11.4, 11.9, 12.7, 13.11; TABPG 2.7
traverse, TAB 13.5
Pitot Tube Traverse, TABPG 3.5
Pitot tubes, TABPG 3.11
Pizza oven, KVS 4.2
Plan
marketing, BSAR 1.4
proposal, BSAR 1.10
Planter box liners, ASMM 8.36
Plaster, KVS 3.2
Plastics, PVC vii
applications, PVC viii
Plate loss coefficients, DD 6.42
Plenum, DCS 6.2
access doors, DCS 6.16
chamber (sound), DD 11.31
construction standards, DCS 6.2
extended, DD 4.4, 7.21, 8.21
mixing, APP 2.3
semi-extended, DD 7.23, 8.23
Plotting conditions, TAB 2.10
Plug, MGW 5.7
Pneumatic
control system operation, APP 3.15
control systems, APP 3.15; ESAM 5.4, 5.6, 5.7; TAB 4.1, 4.9
controllers, APP 3.10
controls, APP 3.14
operator, APP 3.13, 3.16
switches, APP 3.14
system components, APP 3.15
systems, APP 3.8
transducer, APP 3.10
Pneumatic-electric relays (PE switches), APP 3.14; DEHG 6.1
Policy, IAQ 1.5, 6.6
Polishes, IAQ 4.1
Pollutant(s), BSAR 6.1; ESAM 14.2, 17.7, 17.10, 22.5
Outside air, IAQ C.1
record, IAQ A.14
Polymerized, FRP 2.3, 2.3
Polypropylene, PVC 67
Polyvinyl Chloride (PVC), DD 12.5; PVC 62
classification, PVC 62
corrosive resistance, PVC 71, 77
extrusion, PVC 65
flammability, PVC 75
press lamination, PVC 64
properties, PVC 62, 69
roller lamination, PVC 64
sheet production, PVC 64
solvent cements, PVC 54
welding rod, PVC 65
Polyvinyl steel (PVS), DD 12.5
Porous material, IAQ 3.8
Porous surfaces, IAQ 5.2
Positioning relays, APP 3.14
Positive displacement pumps, APP 10.12
Potentiometers, APP 3.14
Power, TAB 12.6; TABPG 2.6
AC, MGW 3.2
consumption, DEHG 3.1
controllers, APP 3.14
conversion, MGW 3.2
DC, MGW 3.2
sources, MGW 3.2
Power roof ventilators, TAB 5.4
Preheat, DEHG 2.1
Preheat coil, APP 2.4
control, APP 3.23
Preheater, APP 2.4
Pre-Insulated lagging panel, LAG 2.14
Preliminary
duct layout, DD 4.2
layout, DD 4.2
Preparation, FGDC 3.3
Present worth
analysis, BSAR 1.19, 1.21
Pressure, See Relief vents; TAB 2.21, 6.1
changes in ducts, DD 5.11
class designation, DCS 1.4; DD 4.6
classification, DD 2.4
controlled expansion valve, APP 12.4
differential controller, APP 3.31
hydronic, APP 10.26
independent boxes, TAB 6.3
loss system components, DD 9.1
losses, See Pressure loss
losses in elbows, DD 5.13
negative, APP 2.25; FGDC 5.10
Positive, FGDC 5.5
pump, APP 10.13
reducing valves, TAB 6.3
sensing elements, APP 3.9
units, APP 7.12, 7.12
VAV terminal unit, APP 7.27
velocity (Vp) classification, DCS 1.4, 1.6
Pressure drop, TAB 9.9, 9.9, 9.14
Pressure gage, TAB 11.9, 13.11
 calibrated, TAB 11.9
differential, TAB 11.10
location, TAB 8.11
magnehelic, TAB 11.5
Pressure Gages, TABPG 3.11
Pressurization, IAQ 4.2
Pressurization control, APP 2.25
building, APP 2.25
complex stairwell, APP 9.39
simple stairwell, APP 9.39
stairwell, APP 9.40
Pressurized Stairway, FSDG F.1
Pre-start checks, COM 1.1, 3.2, 6.1, 7.4
problems, COM 6.1, 6.3, 7.4
Prevention, IAQ 10.1
Price, BSAR 1.4, 8.14
Pricing and estimating design, KVS 5.1
Primary, TAB 15.11
heat, DEHG 2.1
secondary pumping, APP 10.25
Primary Loop, TABPG 5.11
secondary systems, TABPG 15.11
Primary-Secondary Systems, TABPG 5.11
Primers, IDC 42
Proactive, IAQ 1.4, 1.6
management, IAQ 1.4
Problem identification, COM 3.1, 5.2, 5.4, 6.2, 9.2
Problems
avoidance, IAQ 9.1
classification, IAQ 7.1
energy savings, IAQ 9.2
patterns, IAQ 9.1
Procedures
duct sizing, DD 7.1, 8.2
outlet selection, DD 3.12
selection stack design, GSSC 3.1
Process
plant, APP 3.2
Process Exhaust Air Systems, TAB 14.17; TABPG 4.17
Processes, MGW v
carbon arc, MGW 2.2, 2.3
flux-cored arc, MGW 2.2, 2.9
gas metal arc, MGW 2.2, 2.8
gas tungsten arc, MGW 2.2, 2.6
heliarc, MGW 2.5
plasma arc, MGW 2.11, 7.2
shielded metal arc, MGW 2.2, 2.4
submerged arc, MGW 2.13
TIG, MGW 2.5
Productivity, IAQ 1.3, 1.4, 1.5
Program
time switches, APP 3.15
Programmable thermostat, RCSI 9.2
Project coordination, KVS 6.1
Project drawings, TAB 12.5; TABPG 2.5
Projected Beam-Type Detector, FSDG E.1
Promotion, BSAR 1.4
Propeller fans, TAB 5.2
Proportional
action, APP 3.3
band, APP 3.19
control, APP 3.1, 3.3
flow terminal unit, APP 7.15
relays, APP 3.14
valves, APP 3.4
Proportioning control, DEHG 6.1
Proposal, BSAR 1.1, 1.17, 2.3, 2.26, 5.6
Proprietary connectors, SEIS 3.2, 3.2
Proprietary products, MGW vii
Prospect sources, BSAR 1.12
Prospecting, BSAR 2.26
Prospects, BSAR 1.12
Protection board, FSDG 9.4
Protective coatings, See Paint; IDC 40
Provisions for TAB, APP 2.22
Psychosocial, IAQ 1.4
Psychrometer, TAB 11.20
Psychrometric(s), TAB 2.6
charts, ESAM 20.4; TAB 2.8
pipe bracing, SEIS 2.3
Public relations, BSAR 1.4, 1.13
Publications, ASMM 9.38; BSAR 1.15
Pump
amperage, TAB 15.3
check, TAB 15.4
construction features, TAB 8.2
curve verification, TAB 15.3
curves, TAB 8.7, 15.1, 15.2, 15.10
drives, TAB 8.4
head, TAB 8.4
laws, TAB 2.27, 8.1
location, TAB 9.8
measurements, TAB 15.4
pressure, TAB 8.4
rotation, TAB 8.4
selection, TAB 9.14
types, TAB 8.1
Pump Amperage, TABPG 5.3
Pump Check, TABPG 5.4
Pump Curve Verification, TABPG 5.3
Pump Curves, TABPG 5.1, 5.3, 5.10
Pump Measurements, TABPG 5.4
Pump(s), APP 2.1; BSAR 3.16; RCSI 4.6
air control, RCSI 4.7
bypass, APP 3.31
connections, RCSI 4.7
curves, APP 10.14
equations metric, APP 14.16
paraffin wax, FRP 3.1, 4.1
positive displacement, APP 10.12
pressure(s), APP 10.13
secondary, APP 3.24
selection, APP 10.27; RCSI 11.3
solar heat, APP 11.13
Pumping
primary secondary, APP 10.25
problems, TAB 8.5
Purging, smoke, APP 9.37
Purpose, LAG 1.1
PVC, See Polyvinyl Chloride
PVC ductwork, See Duct; PVC 52
Pyrolysis, FSDG F.1
Quadrants, TAB 6.6
Qualifying, BSAR 1.9
Quality, BSAR 5.1, 5.7, 6.4
considerations, MGW 7.3
control, FRP 1.2, 3.3, 7.9, 8.1, D.5
catalyzed, FRP 7.3
testing, MGW 10.2
Quick opening, APP 3.5
Radiant panels, ESAM 4.4, 4.5, 4.6
Radiation, MGW 4.2; TAB 2.2
damper, FSDG 2.2
finned tube, APP 10.2
units, TAB 8.14
Radio, BSAR 1.9, 1.14
Radon, IAQ 4.1, 5.4
Rails, KVS 6.2
Rainfall, ASMM 1.1
data, ASMM 1.2
Range hood exhaust ducts, DD 13.1
Range hood systems, See Hoods
Rated pressure, PVC 6, 10
Rating air cleaners, APP 2.12
Reactions, IAQ 3.7
Rebalance, BSAR 3.19
Receiver, TAB 10.3
Receiver room sound corrections, DD 11.43
Reciprocating
chillers, APP 10.8
compressors, APP 11.15, 12.5
systems, APP 12.1
Recommissioning, BSAR 5.1, 5.3, 5.6, 6.2, 8.4, 8.9;
COM 1.1, 3.3, 3.4, 5.2, 9.1-9.6
analysis, COM 5.4, 9.3, 9.5
cooling loads, COM 9.1-9.3, 9.5
documentation
confirming, COM 9.1-9.3
creating, COM 9.1, 9.2, 9.4, 9.6
existing, COM 9.1
equipment data, COM 9.2-9.5
modifications phase, COM 9.1, 9.5, 9.6
outside air ventilation, COM 9.4, 9.5
plan, COM 9.1, 9.2, 9.6
retraining operations personnel, COM 9.6
space heating, COM 9.1, 9.3, 9.5
survey phase, COM 5.4, 9.1-9.6
test and balance reports, COM 9.2-9.5
tests, COM 9.1, 9.2, 9.5, 9.6
tests phase, COM 9.1, 9.2, 9.6

Records, BSAR 8.9
Records maintenance, IAQ 6.3
Rectangular duct, See Transverse joints; DCS 1.12; FRP 1.1, 6.1, 6.9, 7.2, 7.4-7.8; PVC 10; TAB 2.23
(sound), DD 11.24
arrangement, PVC 27
beaded, DCS 1.45
box lock, DCS 1.51
closures, DCS 1.5
conditions, DCS 7.8
configuration, DCS 7.9
connections, RCDC 8.1
construction, PVC 17, 31
corners, FRP 7.2
criteria, DCS 7.8
crossbroken, DCS 1.45
deflection measurement, DCS 7.10
diagram, RCDC 4.3
dimension, PVC 10
direction, RCDC 4.2
elbows, DCS 2.3
evaluation, DCS 7.11
features, PVC 23
flanges, DCS 1.52; PVC 23; RCDC 8.7
formula derivation, RCDC 9.1
functional criteria, DCS 7.2
gooseneck, DCS 5.8
government lock, DCS 1.51
hangers, PVC 20
inside slip joint, DCS 1.55
intermediate reinforcement, DCS 1.13, 1.23
joint performance testing, DCS 7.8
joints, RCDC 8.1
load, RCDC 4.1
longitudinal seams, DCS 1.39; RCDC 8.1
materials, RCDC 2.2
offset, PVC 33
on all sides, DCS 1.47
on two sides, DCS 1.46
over 96” wide, DCS 1.49
performance criteria, DCS 7.2
pocket locks, DCS 1.51
positive or negative pressure, PVC 11
rated pressure, PVC 10
reinforced, DCS 1.12
reinforcement, DCS 1.15, 1.48
rigidity class, PVC 10
sequence, DCS 7.8
size, RCDC 4.6
slip and drives, DCS 1.5
spacing, RCDC 4.5, 7.59
standing seams, DCS 1.54
stiffener, RCDC 4.5
tables, DCS 1.16; DD 6.14; RCDC 7.1, 7.37, 7.37, 7.46, 7.46, 7.56, 7.59, 7.61
thickness, RCDC 7.1, 7.10, 7.19, 7.28
transverse joint reinforcement, DCS 1.13, 1.24
types, RCDC 3.1
unit conversion, RCDC 4.2
units, RCDC 4.2
unreinforced, DCS 1.12, 1.42, 1.44
vanes, DCS 2.4
Reducers, DD 5.9; RNDC 12.33, 15.13
Reentrainment, IAQ 3.1
References, APP iv; BSAR 1.24, 2.31, 3.19, 4.6, 5.7, 6.6, 7.9, 8.19; DCS v; FSDG R.1; IDC 95; MGW v, 4.4, 5.10, 9.3; OBUC A.1; PVC xv, 4.51
Refrigerant(s), TAB 9.12, 10.4
cautions, BSAR 8.12
cycle, APP 12.1
design, RCSI 11.6
gas, RCSI 11.7
listing, BSAR 8.13
piping, APP 14.29
retrofit, BSAR 8.17
substitutes, BSAR 8.11

| APP | ASMM | BSAR | COM | DCS | DD | DEHG | ESAM | FGDC | FRP | FSDG | FSE | GBSC | IAQ | KVS | LAG | LTM | MGW | OBUC | PVC | RCDC | RCSI | RNDC | RSMG | SEIS | TAB | TABPG |
|-----|------|------|-----|-----|----|------|------|------|-----|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
temperature, APP 12.1
types, BSAR 8.11
venting, RCSI 11.7
Refrigeration, ESAM 1.3, 1.5, 1.6, 2.1, 2.4, 2.5, 2.6,
2.7, 4.1, 4.7, 5.2, 5.3, 5.4, 5.6, 5.10, 5.15, 8.1, 8.6,
8.7, 11.1, 15.1, 15.2, 16.20, 17.1, 20.5, 20.6, 21.3,
21.5; TAB 10.1, 10.2
certification, BSAR 8.16
commercial, BSAR 2.20
control, APP 3.35
cycle, TAB 10.2
design, RCSI 11.6
recovery, BSAR 8.11
systems, APP 12.1; BSAR 3.18; TAB 10.1
Refuge areas, APP 9.43
Register, FGDC 4.12
Register connections, DCS 2.18
Reglet, RSMG 2.3
Regulations, FSDG 3.1
Reheat, DEHG 2.1
coil, APP 2.4; TAB 12.7
induction, APP 8.1
system, APP 6.1
Reheat Coil, TABPG 2.7
Reinforcement, See Duct reinforcement; FRP 1.1,
1.2, 2.1, 2.5, 3.1, 5.1, 5.2, 6.2, 7.1, 7.2, 7.7, C.1,
D.5; IDC 25
angle, IDC 26
attachment, DCS 1.48
bar, IDC 29
Channel, FGDC 5.6, 5.7, 5.9; IDC 29
hat section, IDC 29
I-beam, IDC 29
openings in stack, GSSC 6.5
steel filter housing, IDC 27
Throat, FGDC 5.13
Tie Rod, FGDC 5.1, 5.2
Transition, FGDC 5.16
transverse joints, DCS 1.13, 1.24
Trunk, FGDC 5.13
Reinforcement, Access Doors, FGDC 5.17
Reinforcing member, See specific material
Relative humidity, TAB 2.9
Relays
electro-pneumatic (EP switches), APP 3.14
pneumatic-electric (PE switches), APP 3.14
positioning, APP 3.14
proportional, APP 3.14
switching, APP 3.14
two-position, APP 3.14
Release film, FRP D.5
Relief
air openings, APP 2.2
devices, TAB 10.4
disc, IDC 57
pivoted door, IDC 57
vents, IDC 56
Remote bulb, APP 3.9
Remote heating and cooling coil installations, DCS
2.12
Renewable media filters, APP 2.16
Renovation, IAQ 10.5
Repeat-cycle timers, APP 3.15
Replacement air, KVS 1.2
Report forms, TAB 12.5, 13.3, 15.4, 15.7; TABPG
2.5, 3.3, 5.4, 5.7
Report, sample, COM F.1
Requirements, FRP 1.1, 1.2, 3.3, 5.1, 5.2, 6.1, 6.2,
6.9
celling assemblies, FSDG 11.4
Research, BSAR 1.6, 1.7; ESAM 1.1, 1.4, 10.1,
17.7, 18.6, 21.4
Reset rate, APP 3.4
Residential
system design, DD 4.4
Residential Systems, DD 4.4
Resin, FRP 1.1, 1.2, 2.1, 6.1, 8.3, D.5
catalyzed, FRP 1.2, 2.1, B.1
chlorendic, FRP 2.1
halogenated, FRP 2.4
isophthalic, FRP 2.1
othophthalic, FRP 2.1
polyester, FRP 2.2
thermosetting (or Thermoset), FRP B.1, E.1
Resistance element, APP 3.9
Resistances, TAB 2.4
Responsibilities, LTM 2.1
contractor, LTM 2.3, 2.14, 2.25, 2.27
Return Air Settings, TABPG 3.2
Return air, KVS 1.3; TAB 4.6
constant volume, APP 2.17
duct, DCS 2.2
duct example, DD 5.11
duct systems, TAB 7.11
fan, APP 2.4, 2.27
inlet, RCSI 8.3; TAB 6.14
inlet(s), DD 9.14
modulation, APP 2.29
registers, DD 9.14
settings, TAB 13.2
system pressure, DD 5.10
system sizing, DD 7.12, 8.12
thermostats, APP 3.36
Return air inlets
 rectangular duct, FRP 1.1, 6.1, 6.9, 7.2, 7.4, 7.8
 rectangular duct corners, FRP 7.2
Return on investment method, APP 1.2; ESAM 12.1, 14.8, 14.8, 23.4
Return registers, TAB 6.15
Return systems, TAB 9.16
Reverse acting controllers, APP 3.10; TAB 4.6
Reverse return, TAB 15.5
Reverse-Return, TABPG 5.5
Reversible, APP 3.12
Reviews, IAQ 9.1
RIDCS Software Process, RNDC iii, 1.2, 1.3, 1.4, 3.1, 3.3, 3.4, 3.5, 3.6, 3.10, 8.1, 8.2, 8.4, 8.5, 8.54, 9.1, 9.2, 9.3, 9.4, 9.5, 9.34, 10.1, 10.2, 10.3, 10.5, 10.34, 11.1, 12.1, 12.21, 12.28, 12.52, 12.56, 12.5, 13.16, 17.1
Rigid board, KVS 3.3
Rigidity, FGDC 3.1
Rigidity class, PVC 6
 joints and reinforcements, PVC 14
Rise, TAB 3.6
Riser, FGDC 6.6
 exhaust, FSDG 12.1
 joints, SEIS 3.3
 return duct, FSDG 12.1
Rod-and-tube element, APP 3.9
Roof, See Also Metal roofs; ASMM 1.1; RSMG 1.1
 batten seam, ASMM 6.13
 bermuda, ASMM 6.17
 conical, ASMM 6.47
 deck, ASMM 6.5
 domes, ASMM 6.47
 flat seam, ASMM 6.7
 mansard, ASMM 6.43
 ornamental, ASMM 6.45; RSMG 4.1
 panels, ASMM 6.35
 penetrations, KVS 6.2
pitted, RSMG 1.3
profiles, ASMM 6.5
residential, RSMG 1.1
scuttles, ASMM 8.12
sloped, ASMM 1.7
specification, ASMM 9.21
standing seam, ASMM 6.9
support, ASMM 6.3
test report, ASMM 9.14
transitions, ASMM 6.15
valley, RSMG 1.34
ventilators, TAB 5.4
Roof-Ceiling Assembly, FSDG 2.1
Rooftop duct installation, DCS 5.6
Rooftop equipment installation, DCS 5.6, 5.7
Rooftop termination, KVS 4.3
Rooftop units
 flashing, DCS 5.7
Room
 absorption, DD 11.3, 11.44
 criterion curves, DD 11.3, 11.5, 11.8
Rotary compressors, APP 11.16, 12.5
Rotary dehumidifiers, APP 9.16
Rotary wheel
 chart, DD 9.12
 exchangers, ESAM 18.4, 18.9
Rotating mandrel, FRP D.2
Rotating vane, TAB 11.5
 anemometers, IDC 88, 90, 92
Rotation, TAB 3.5, 5.8
Rotation measuring instruments, TAB 11.12
Roughness factors, DD 14.8
Round and Rectangular Flue, LAG 3.11
Round duct. See specific parameters, See Pre-formed round duct; DCS 3.1; FRP A.1, C.1, C.5; PVC 6; RCSI 7.1
 (sound), DD 11.26
 aluminum schedule, DCS 3.7
 area table, DCS A.11
 circumference table, DCS A.11
 conical tees, DCS 3.12

| BSAR | Building Systems Analysis & Retrofit Manual | SEIS | Food Service Equipment Fabrication and Installation Guidelines | RCDC | Rectangular Industrial Duct Construction Standards
| DCS | HVAC Duct Construction Standards Metal and Flexible Manual | IAQ | Indoor Air Quality – A Systems Approach | RNDC | Round Industrial Duct Construction Standards
| DD | HVAC Systems Duct Design Manual | IDC | Accepted Industry Practice for Industrial Duct Construction | RSMG | Residential Sheet Metal Guidelines

SMACNA Master Index 47
construction standards, DCS 3.1
diameter, DCS A.11
elbows, DCS 3.1; PVC 17, 30
features, PVC 23
fitting classes, DCS 3.1
hangers, PVC 20
joints, DCS 3.9
lateral, DCS 3.11
longitudinal seams, DCS 3.8
mitered elbow schedule, DCS 3.1
rated pressure, PVC 6
reinforcement negative pressure, DCS 3.5; PVC 7
reinforcement positive pressure, PVC 6
rigidity class, PVC 6
seams, DCS 3.8
steel gauge schedule, DCS 3.3
supports, DCS 4.8
tees, DCS 3.11
transverse joints, DCS 3.9
Round elbow, LAG 3.16
Round tee, LAG 3.14
RTP (Also see FRP and GRP), FRP 1.1
radiant panels, ESAM 4.4, 4.5, 4.6
refrigerant, ESAM 5.15, 15.1, 15.2, 17.12
Rumble(sound), DCS 1.7, 7.16; DD 11.7
Run-around coil exchangers, ESAM 18.14

S
S Cleat, LAG 3.4
Saddle taps, DCS 3.11
Safety, FGDC 2.1; FRP 1.2, 2.4, 3.3, 4.4, 5.1, 7.6, 7.7, 7.9, 8.2
air contamination, MGW 4.2
cabinets, biological, APP 9.28
considerations, BSAR 2.16
control(s), MGW 4.5
controls, TAB 4.2, 10.4, 15.7
environmental, BSAR 3.17
equipment, MGW 3.10
explosion, MGW 4.3
factor(s), DCS 7.6; DD 5.5; FRP 1.2, 5.9, C.1;
GSSC 6.4; TAB 3.6
fire, MGW 4.3
flammable, MGW 4.3
fumes, MGW 4.2
gases, MGW 4.3
guidelines, laboratory, APP 9.20
heat, MGW 4.3
issues, RCSI 10.5
lead, ASMM 9.2
NFPA, MGW 4.4; RCSI 10.6
noise, MGW 4.3
NTF, MGW 4.4
OSHA, BSAR 3.17

procedures, MGW 4.4
references, MGW v
shock, MGW 4.2
switches, TAB 3.8
Safety Factor, RNDC 1.1, 4.2, 4.9, 5.3, 5.5, 5.6, 5.7,
5.8, 5.9, 6.1, 7.2, 8.55, 9.36, 10.34, 11.4, 11.54,
13.1, 13.2
Safety Solvent, FRP 2.27, 4.4, 8.3
closing, BSAR 2.26
objections, BSAR 2.26
pitch, BSAR 6.5
stall, BSAR 2.26
Safety Controls, TABPG 5.7
Sag, FGDC 5.4
Sales

calls, BSAR 2.26
Sample specification, ASMM 9.21
Samples
report, COM F.1
specification, COM E.1
Sampling, IAQ 5.1, 8.11
capture, IAQ 8.1
carbon dioxide, IAQ 8.6
methods, IAQ 8.1
ports, GSSC 5.2
tube, FSDG E.1
Saturation line, TAB 2.8
SBCCI, FSDG R.2
SBS, IAQ 2.1, 7.1
Schedule, commissioning, COM A.1
Scheduling, TAB 12.5; TABPG 2.5
Scheduling (construction for IAQ), OBUC 3.5
Scheduling maintenance, APP 3.44
Schematic Duct System Layout, TABPG 2.3
Schematics, TAB 12.5; TABPG 2.5
duct system layout, TAB 12.3
Scope, FRP 1.1; KVS 1.1; LAG 1.1
Screens, See Also Louvers; ASMM 1.55, 1.65,
1.67, 1.69, 1.71, 1.73, 1.75, 1.77, 1.79, 1.81
Scuttles, ASMM 8.12
Sealants, DCS 1.8; LTM 1.5
embedded fabric, DCS 1.12; LTM 1.6
gaskets, DCS 1.11; LTM 1.5
heat applied, DCS 1.11; LTM 1.6
liquids, DCS 1.11; LTM 1.5
mastics, DCS 1.11; LTM 1.6
safety, DCS 1.12; LTM 1.6
shelf life, DCS 1.12; LTM 1.6
strength, DCS 1.12; LTM 1.6
surface preparation, DCS 1.12; LTM 1.6
tapes, DCS 1.11; LTM 1.5
Sealed bellows, APP 3.9
Seam, FGDC 3.3
Seams, See Also Longitudinal seams; IDC 22
 longitudinal, IDC 23
 rectangular, IDC 24
 round, DCS 3.8; IDC 23
Seasonal
 bonding, FRP 3.3, 4.1
 changeover, APP 3.37
 heat source, APP 11.10
 pump, APP 3.24
Secondary loop, TAB 15.11; TABPG 5.11
Segmented elbows, PVC 17; RNDC 15.9
Seismic
 drift, SEIS 3.3
 hazard level (SHL), SEIS iii, 2.1, A.1, B.1
 joints, SEIS 3.3
 loads, SEIS 1.1
 zone, SEIS 2.1
Seismic Restraint Manual, KVS 6.4
Selection of stiffeners, RNDC 12.1
Selection procedures, DD 3.12; GSSC 3.1
Self-contained controls, TAB 4.2
Selling
 audit, BSAR 2.13, 2.26, 2.29
 direct, BSAR 1.4, 1.13, 1.14
 indoor air quality, BSAR 4.1
 literature, BSAR 1.4
 mail, BSAR 1.4
 retrofit, BSAR 2.24
Semi-extended plenum, DD 7.23, 8.23
Semi-hermetic compressor, APP 12.5
Seminars, BSAR 1.4, 1.9
Sensible cooling, TAB 2.12
Sensible heat, ESAM 2.2, 16.14, 16.15, 16.16,
 16.17, 16.18, 16.20, 18.1, 18.2, 18.3, 18.4, 18.5,
 18.6, 18.8, 18.10, 18.14, 18.15, 19.1, 21.3
 storage, APP 13.7
Sensible heating, TAB 2.12
Sensing elements, APP 3.9
 humidity, APP 3.9
Sensing elements pressure, APP 3.9
 temperature, APP 3.9
Sensitivity, FSDG E.1
 detector, FSDG E.2
Sensory inputs, IAQ 1.4
Sequence control mode, APP 3.34
Series, TAB 4.6
Series chiller operation, APP 10.8
Series circuits, TAB 3.1
Series Loop, TABPG 5.5
Series loop system, APP 10.18; TAB 9.2, 15.5
Series pumping, TAB 8.12
Series S type, TAB 14.9; TABPG 4.9
Serrated roller, FRP 4.1, D.6
Service, BSAR 8.10
Service life, equipment, DD 2.6
Set point, APP 3.3
Seven day timers, APP 3.15
Shaft
 construction, KVS 3.2
 interior, APP 2.24
 smoke, APP 9.42
Shaft sleeves, TAB 8.2
Sheaves, TAB 5.10
Sheet metal(s), RSMG C.1, B.1, A.1, C.5, 2.3, 3.5
 aluminum, ASMM 9.4
 black iron, ASMM 9.1
 copper, ASMM 9.2
 galvanized, ASMM 9.1
 lead, ASMM 9.5
 lead-coated copper, ASMM 9.2
 properties, DD 12.5

APP HVAC Systems – Applications
ASMM Architectural Sheet Metal
BSAR Building Systems Analysis & Retrofit Manual
COM HVAC Systems Commissioning Manual
DCS HVAC Duct Construction Standards Metal and Flexible
DD HVAC Systems Duct Design
DEHG Ducted Electric Heat Guide for Air Handling Systems
ESAM Energy Systems Analysis and Management
FGDC Fibrous Glass Duct Construction Standards
FRP Thermoset FRP Duct Construction Manual
FSDG Fire Smoke and Radiation Damper Guide for HVAC Systems
FSE Food Service Equipment Fabrication and Installation Guidelines
GSSC Guide for Steel Stack Construction
IAQ Indoor Air Quality – A Systems Approach
KVS Kitchen Ventilation Systems and Guidelines
LAG Accepted Industry Practices for Sheet Metal Lagging
LTM HVAC Air Duct Leakage Test Manual
MGW The Manager’s Guide for Welding
OBUC IAQ Guidelines for Occupied Buildings Under Construction
PVC Thermoplastic Duct (PVC) Construction Manual
RCDC Rectangular Industrial Duct Construction Standards
RCSI Residential Comfort Systems Installation Standards
RNDC Round Industrial Duct Construction Standards
RSMG Residential Sheet Metal Guidelines
SEIS Seismic Restraint Manual – Guidelines for Mechanical Systems
TAB HVAC Systems Testing Adjusting and Balancing
TABPG TAB Procedural Guide
stainless, ASMM 9.3
Sheetlead, DCS A.37
Shell and coil condenser, APP 12.7
Shell and tube condenser, APP 12.7
Shell and tube evaporator, APP 12.5
Shelves, FSE 4.1
Shield, ASMM 4.46
Shielding gas, MGW 2.16
Shingle, ASMM 6.25
Shiplap, FGDC 3.5
Shop standards, DCS A.15, A.16, A.17, A.18
Short radius vanes, DCS 2.6
construction, DCS 2.7
number, DCS 2.6
 Shut off, TAB 9.5
 Shut off VAV systems, APP 2.29
Shutdown procedures, COM 6.4, 7.7, 9.6
SI(metric), FSDG 10.2
Sick building syndrome, COM 3.2
Side wall installation, DD 3.13
Siding, ASMM 6.1, 6.52
Signaling System, FSDG E.2
Silicon Controlled Rectifiers (SCR), DEHG 6.1
Sill installation, DD 3.13
Simple seated, valve, APP 10.25
Simple stairwell pressurization, APP 9.37
Single
fan systems, APP 2.26
injection systems, APP 9.38
path systems, DCS A.25
pressure devices, APP 3.18
purpose occupancies, APP 1.2
seated valve, APP 3.11, 3.16, 10.25
Single duct cooling only units, APP 7.12
Single Lock Standing Seam, LAG 3.4
Single phase circuit, TAB 3.1, 3.3
Single span, LAG 2.8
Single-path Systems, TAB 7.1
Size of Damper, FSDG 5.1
Sizing
dampers, DD 8.7
duct worksheets, DD 7.24, 8.24
tables, SEIS 2.1
Skylights, ASMM 8.7
plastic, ASMM 8.9
Slack effect, APP 9.33
Slate, ASMM 6.25
Sleeve Gage, FSDG 5.4
Slip Joint, LAG 3.8
Slot diffuser applications, DD 3.13
SMACNA, MGW 4.4
SMACNA HVAC Duct Construction Standards,
KVS 3.1, 5.5, SMACNA HVAC Duct Construction Standards Manual and Seismic Restraint Manual, KVS 6.1
SMACNA HVAC Systems Duct Design Manual,
KVS 5.4, 5.5
SMACNA Research, DD 5.28
Small Systems, TAB 9.2
SMAW, See Shielded metal arc welding
Smoke, See Fire and smoke dampers; FSDG E.1, F.1
barrier, FSDG F.1
tab control, APP 9.35; COM 1.1, 2.1, 5.3; KVS 3.4
tab control system, FSDG F.1, F.2, F.4
tab control zone, FSDG F.1
dampers, APP 9.43; FSDG F.1
tab detector, FSDG F.4
tab devices, TAB 11.8
tab exhaust shaft, FSDG F.1, F.4
tab exhaust system, FSDG F.1
tab hatches, ASMM 8.14
management, APP 9.35
management system, FSDG F.1
mechanical control system, FSDG F.1
movement, APP 9.33
passive control system, FSDG F.1
purging, APP 9.37
shafts, APP 9.42
venting, APP 9.40
zone, FSDG F.1
zone venting, APP 9.42
Smoke Barriers, FSDG 2.2
vertical, FSDG 4.1
Smoke control
systems, APP 9.32
zoned, APP 9.41
Smoke Control Zone, FSDG 2.2
Smoke Damper, FSDG 2.2
Smoke Detector, FSDG E.2
area-type, FSDG E.1
cloud chamber, FSDG E.1
design, FSDG E.2
duct-type, FSDG E.1, E.2
installation, FSDG E.2
line-type, FSDG E.1
location, FSDG E.2
maintenance, FSDG E.3
selection, FSDG E.2
spot-type, FSDG E.1
terminology, FSDG E.1
Smoke management, FSDG F.1
air flow, FSDG F.4
dedicated system, FSDG F.4
design tasks, FSDG F.2
HVAC system, FSDG F.4
terminology, FSDG F.1
Smoke test, TAB 14.17; TABPG 4.17
Smokeproof Enclosure, FSDG 2.2
Smoking, IAQ 4.4, 9.1
<table>
<thead>
<tr>
<th>APP</th>
<th>HVAC Systems – Applications Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMM</td>
<td>Architectural Sheet Metal Manual</td>
</tr>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible Manual</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design Manual</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards Manual</td>
</tr>
<tr>
<td>FRP</td>
<td>Thermoset FRP Duct Construction Manual</td>
</tr>
<tr>
<td>GSSC</td>
<td>Guide for Steel Stack Construction</td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach Manual</td>
</tr>
<tr>
<td>IDC</td>
<td>Accepted Industry Practice for Industrial Duct Construction Manual</td>
</tr>
<tr>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Laying Manual</td>
</tr>
<tr>
<td>LTM</td>
<td>HVAC Air Duct Leakage Test Manual</td>
</tr>
<tr>
<td>OBUC</td>
<td>IAO Guidelines for Occupied Buildings Under Construction Manual</td>
</tr>
<tr>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
</tr>
<tr>
<td>RCDC</td>
<td>Rectangular Industrial Duct Construction Standards Manual</td>
</tr>
<tr>
<td>RCSI</td>
<td>Residential Comfort Systems Installation Standards Manual</td>
</tr>
<tr>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards Manual</td>
</tr>
<tr>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines Manual</td>
</tr>
<tr>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing Manual</td>
</tr>
</tbody>
</table>
dust collectors, PVC 55
equipment identification, PVC 51
equipment/accessories, PVC 55
excluded, PVC 49
expansion joint location, PVC 54
fans, PVC 55, 57
filters, PVC 55
fire dampers, PVC 54
general provisions, PVC 49
guarantee, PVC 56
hoods, PVC 55
included, PVC 49
louvers, PVC 56
materials, PVC 53
motors, PVC 56
reference, PVC 51
size, PVC 53
sound attenuators, PVC 56
submittals, PVC 51
work, PVC 49
Spiral flat-oval duct, DCS 3.13
Spiral Lockseam (Duct/ Pipe), RNDC iii, 1.2, 1.4, 4.1, 8.2, 8.55, 9.2, 9.36, 10.2, 10.34, 11.1, 11.2, 11.4, 11.5, 11.45, 11.52, 11.53, 11.54, 12.5, 12.21, 12.26, 15.1, 15.2
Spirally Generated Lockseam, RNDC 1.4, 4.5, 11.4, 11.5, 12.1, 13.1, 15.1
Spires, ASMM 8.22
Splash pan, ASMM 1.79
Splitter, FGDC 4.5, 4.7
 spacing, DD 5.14
vanes, DD 5.14
Spores, IAQ 5.2
Spray chop, FRP 2.5
Sprayed coil systems, APP 3.27
Spreader sizes, SEIS 2.3
Spring ranges, APP 3.18
Spring-return, APP 3.12
Sprinklers, FRP 7.8
Square to round transition, LAG 3.18
Stack construction, GSSC 5.1
 assembly and fitup, GSSC 5.1
 bolted connections, GSSC 5.1
 definitions of terms, GSSC 3.9
 fabrication and installation, GSSC 5.1
 metrics use of guide with, GSSC A.1
 sampling facilities, GSSC 5.2
 welding, GSSC 5.1
Stack design, See Stack design criteria; GSSC 3.1
 base plate and anchor bolts, GSSC 6.5
 bolts for comp. angle connections, GSSC 6.11
criteria, GSSC 6.1
details typical (figure), GSSC 3.6
equipment, GSSC 6.13
ladder installation, GSSC 3.3
limitations, GSSC 3.1
list of symbols, GSSC A.3
material, types of, GSSC 3.5
materials, selection, GSSC 4.1
openings, GSSC 3.5
reinforcement, GSSC 6.5
reinforcement (figure), GSSC 3.8
stiffeners, GSSC 6.11
thickness of stack shell, GSSC 6.2
Stack design criteria, GSSC 6.1
 (figure), GSSC 6.7
 base plate and anchor bolts, GSSC 6.5
 base plate dimensions (figure), GSSC 4.2
design of, GSSC 6.11
factors of safety, GSSC 6.4
formula derivation, GSSC 6.1
length, GSSC 6.10
limitations, GSSC 3.1
longitudinal compression, GSSC 6.3
longitudinal tension, GSSC 6.4
reinforcement of openings, GSSC 6.5
reinforcement of openings (figure), GSSC 3.8, 6.6
Stack effect, FSDG F.4; IAQ 3.7
Stack height
 100 feet, GSSC 4.20
 120 feet, GSSC 4
 20 feet, GSSC 4.3, 4.21
 30 feet, GSSC 4.6, 4.24
 40 feet, GSSC 4.9, 4.27
 50 feet, GSSC 4.12, 4.30
 60 feet, GSSC 4.15
 80 feet, GSSC 4.19
Stack sampling facilities, GSSC 5.2; IDC 64
elevation view, IDC 66
ports, GSSC 5.2; IDC 64
power source, GSSC 5.2; IDC 64
topview, IDC 67
work platform, GSSC 5.2; ID 64
Stack(s), See Stack construction, See Stack height, See Stack design and Stack design; GSSC 9, 1.1
attachment (figure), GSSC 4.34
base configuration and Stack design; GSSC 9, 1.1
criteria, GSSC 4.34
bolts for comp. angle connections, GSSC 435
bolts specifications, GSSC A.1
companion flange and stiffeners sizes, GSSC 4.33
cross-sectional cross-sectional area for single or multiple bolts, GSSC 6.8
effects, DD 3.7

Stair Enclosure Pressurization, FSDG F.4

Stairwell pressurization, APP 9.40

Stamped grilles, TAB 6.12, 6.14

Standard 62-1989, IAQ 1.2, 1.4, 3.8, 4.3, 9.3, 10.4

Standards and Listed, KVS 2.1

Standard Building Code, FSDG 3.1

Standard elbows and mitered joints, FRP 7.3, Standard for the Installation of Air-Conditioning and Ventilating Systems, FSDG 3.1

Standard gauge-thickness

- alloy 3003.H14, DCS A.5
- aluminum, DCS A.5
- galvanized steel, DCS A.2
- stainless steel, DCS A.4
- uncoated steel, DCS A.3

Standards, IAQ 1.1, 1.4; MGW 6.2; PVC 3

applicability, PVC 68

building, BSAR 2.17

<table>
<thead>
<tr>
<th>APP</th>
<th>HVAC Systems – Applications</th>
<th>FRP</th>
<th>Thermoset FRP Duct Construction Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
<td>IAQ</td>
<td>Accepted Industry Practice for Kitchen Ventilation Systems and Guidelines</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design</td>
<td>IDC</td>
<td>Accepted Industry Practice for Metal Lagging</td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Lagging</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
<td>LTM</td>
<td>The Manager’s Guide for Welding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGW</td>
<td>TAB</td>
</tr>
</tbody>
</table>

OBUC | IAO Guidelines for Occupied Buildings Under Construction |

PVC | Thermoplastic Duct (PVC) Construction Manual |

RCDD | Rectangular Industrial Duct Construction Standards |

RCIS | Residential Comfort Systems Installation Standards |

RNDC | Round Industrial Duct Construction Standards |

RSMG | Residential Sheet Metal Guidelines |

SEIS | Seismic Restraint Manual – Guidelines for Mechanical Systems |

TAB | HVAC Systems Testing Adjusting and Balancing |

TAPBG | TAB Procedural Guide |
Steam Systems-Medium And High Pressure, TAB 9.18
Steam-to-water heat exchangers, APP 10.11
Steel
 carbon, MGW 2.18, 2.20, 2.26, 2.27
 galvanized, DCS A.2; DD 12.1; MGW 2.26
 stainless, DCS A.4; MGW 2.18, 2.21, 2.27, 2.28
Steel deck frame, See Insulated steel deck frame
Steel duct weight tables, DCS A.8
Steel reinforcement, PVC 26
Steel thickness, SEIS 3.1
Step controller, APP 3.14; DEHG 6.1
Stepped, TAB 4.6
Stiffened solutions, RNDC 4.2, 4.4, 6.4, 7.3, 8.4, 8.54, 9.4, 9.34, 9.35, 10.4, 10.34, 11.2, 17.7, 17.16
Stiffeners, See Duct stiffeners; FRP 1.2, 6.1, 6.9, A.5; RCDC 4.5, 8.1
 formula, RCDC 9.5
Storage, FRP 7.1, 8.3; IAQ 10.12; LAG 2.1
 boxes, IAQ 4.3
 fuels, IAQ 3.9
 paper, IAQ 6.8
Storage tanks, RCSI 11.8
 LP gas, RCSI 11.8
 oil, RCSI 11.9
 open vent, RCSI 11.9
 safety devices, RCSI 11.9
Storm covers, DCS 5.9
 exhaust, DCS 5.9
 intake, DCS 5.9
Straight duct
 losses, DD 5.12
 sections, DD 5.9
Straighteners, DD 6.10
Straight-through flow, APP 10.23; DD 6.12, 14.18
 loss coefficients, DD 6.12, 14.18
Straight-through sections, DD 5.17
Strainers, APP 10.17; RCSI 4.7; TAB 9.6, 15.8; TABPG 5.8
Stress, FGDC 2.1
Stressors, IAQ 1.4
Stroboscope, TAB 11.14
Structural engineer, SEIS 3.2, B.1
Structural layer, FRP 1.1, 2.5, 3.1, 3.3, D.6
Structural system, SEIS 2.2
Structure borne noise, DD 11.3
Study of Systems and Data, TAB 12.4; TABPG 2.4
Stuffing box, TAB 8.2
Style hoods, eyebrow, KVS 2.11
Styrene, FRP 4.1, 8.2, 8.3
Subcontractor, BSAR 2.1
Subdividing panels, RCDC 6.1
Subduct, FSDG 12.1, 12.2
Sub-master, TAB 4.6
Submaster thermostat, APP 3.11
Submittal, PVC 51
 review, DD 9.1
Success, IAQ 9.3
Suction, TAB 2.22, 2.23
 head, TAB 2.27, 2.28
 lift, TAB 2.27, 2.29
 piping, APP 12.5; TAB 10.3
 stop valve, TAB 10.3
Summer-winter system(s), APP 10.22; TAB 15.11
Summer-Winter Systems, TABPG 5.11
Summer-winter thermostat, APP 3.11
Sumps, ASMM 1.81
Sun position, RCS 2.9
Superheat, APP 12.3; TAB 10.4
Superimposed Load, RNDC 4.4, 4.6, 6.1, 6.6, 7.1, 7.8, 7.15, 7.16, 7.22, 7.23, 13.54-13.85
Supermarket, BSAR 8.17
Supervisor, MGW 4.2
Supplemental heating, APP 2.4, 11.27
Supply
 air fan, APP 2.6
 air outlet(s), RCSI 8.1
 duct system, DCS 2.2
 fan/exhaust fan combination, APP 2.30
 laboratory, APP 9.19
 modulation, APP 2.17
 opening or outlet, DD 3.2, 3.3, 3.10, 3.19
 outlet performance, DD 3.5
 register, DD 9.14
 system, DD 7.5, 8.4
 system example, DD 7.4, 7.16, 8.4, 8.15
Supply air, KVS 1.3
Supply air duct, TAB 7.9
Supply fan plenum, DD 7.4, 8.4
Supply outlet throttling units, TAB 6.4
Supply outlets, TAB 6.11
Supply registers, TAB 6.15
Supports, DCS 4.1; FGDC 6.1; IDC 30
 adjustable, IDC 33
 angle bracket, IDC 34
 floor, DCS 4.14
 Heater, FGDC 6.7
high temperature duct, IDC 37
large duct, DCS 4.13
reinforcement, IDC 33
riser, DCS 4.14
trapeze, DCS 4.10
Vertical, FGDC 6.6
wall, DCS 4.16
wall anchor, IDC 35

Surface area computation, IDC 50
Surface area tables, DCS A.7, A.11; LTM A.9, A.10
Surface effect, DD 3.5
Surface hardness, FRP 3.3, 7.1
Surface preparation, IDC 40; RNDC 3.14, 12.30, 12.31, 12.33, 15.5, 15.6, C.2
abrasive cleaning, IDC 41
concrete surface, IDC 40
metal surface, IDC 40
primers, IDC 42

Surfacing veil, FRP 2.5, D.6
Survey, BSAR 2.4, 2.7, 6.2, 7.1
Surveys
conducting, IAQ 6.3
facility, IAQ 6.6
occupant, IAQ 6.5
questions, IAQ 6.5

Swinging vane anemometer, IDC 86

Switches
auxiliary, APP 3.14
pneumatic, APP 3.14
Switching, relays, APP 3.14
Symbols, DCS 1.1; DD 4.9; FSE 1.1; IDC 120; RCDC 9.15
air conditioning, DCS 1.2
curves, DD 5.1
edge-flange, MGW 5.8
fillet, MGW 5.5
groove, MGW 5.4
Inch-Pound, FSDG 10.1
intermittent, MGW 5.6
plug, MGW 5.7
SI (metric), FSDG 10.2
curves, TAB 2.25
deficiencies, TAB 13.7
desiccant dehumidification, APP 9.14
design, APP 1.1
design examples, DD 7.1, 8.1
design for, DD 7.1, 8.1
design information, PVC 3
design-dual duct, APP 5.6
distributed processing, APP 3.42
diverting fitting, one pipe, APP 10.19
domestic water, BSAR 2.19
draw through, APP 4.4
dual duct (high velocity), APP 5.2
dual duct (low velocity), APP 5.1
duct heat loss, RCS 2.7
dual duct, APP 10.18
HVAC, BSAR 2.18
hydraulic, APP 10.1
induction, APP 8.1
kitchen, DD 13.1
laboratory, APP 9.18
maintenance modifications, BSAR 2.3
moisture laden, DD 13.1
multizone, APP 4.1
once-through, APP 10.29
open, APP 1.15, 10.22
open system, condenser water, APP 10.28
operating point, TAB 5.14
operation, BSAR 8.1
operation, terminal reheat, APP 6.2
others, BSAR 2.16
pneumatic, APP 3.7
pressure changes, DD 5.9
pressure loss, DD 9.2
pressures, DD 5.10
range hood, DD 13.1
reciprocating, APP 12.1
refrigeration, APP 12.1
resistance curve, TAB 5.13
review, TAB 12.2
schematic drawings, TAB 12.2
selection parameters, APP 1.1
self-powered, APP 3.8
series loop, APP 10.18
single fan, APP 2.15, 2.26
single injection, APP 9.38
smoke control, APP 9.32
solar, DD 13.1
sprayed coil, APP 3.27
summer-winter, APP 10.22
terminal reheat, APP 6.1
three-pipe, APP 8.8, 10.20
two-fan, APP 2.27
two-pipe, APP 8.7, 10.19
unitary, APP 2.1, 11.1
variable air volume, APP 7.1, 7.7
variable air volume duct, APP 7.27
VAV, APP 7.2
VAV and perimeter air, APP 7.10
VAV reheat, APP 7.4
wind, DD 5.6
Systems
Coordination, TABPG 3.5
Deficiencies, TABPG 3.7

TAB
air devices, BSAR 3.5
aspects, BSAR 3.3
design, BSAR 3.4
design considerations, DD 10.1
duct cleaning, BSAR 6.1
fans, BSAR 3.5
hoods, BSAR 3.17
instrumentation, BSAR 3.4, 3.7, 3.8
manual, BSAR 7.2, 7.7
marketing, BSAR 3.12
procedures, BSAR 3.6
requirements, BSAR 3.2
specification, BSAR 3.3
tolerances, BSAR 3.15
training, BSAR 5.5

TAB instrument selection, TAB 12.5; TABPG 2.5
TAB procedures, TAB 12.5; TABPG 2.5

TAB Report Forms
10-02, TAB 16.17
1-02, TAB 16.1, 16.4
11-02, TAB 16.2, 16.18
12-02, TAB 16.2, 16.19
13-02, TAB 16.2, 16.20
14-02, TAB 16.2, 16.21
15-02, TAB 16.2, 16.22
16-02, TAB 16.3, 16.23
17-02, TAB 16.3, 16.24
18-02, TAB 16.3, 16.25
19-02, TAB 16.3, 16.26
20-02, TAB 16.3, 16.27
2-02, TAB 16.1, 16.5
3-02, TAB 16.1, 16.6
4-02, TAB 16.1, 16.7
4-03, TABPG 6.1, 6.8
5-02, TAB 16.1, 16.8
6-02, TAB 16.1, 16.9
7-02, TAB 16.2, 16.10, 16.11
7-03, TABPG 6.2, 6.11, 6.12
8-02, TAB 16.2, 16.12, 16.13
9A-02, TAB 16.14
9A-02, 9B-02, 9C-02, TAB 16.2
9B-02, TAB 16.15
9C-02, TAB 16.16
preparing, TAB 16.1; TABPG 6.1
TAB 10-03, TABPG 6.2, 6.18
TAB 1-03, TABPG 6.1, 6.5
TAB 11-03, TABPG 6.2, 6.19
TAB 12-03, TABPG 6.2, 6.20
TAB 13-03, TABPG 6.2, 6.21
TAB 14-03, TABPG 6.3, 6.22
TAB 15-03, TABPG 6.3, 6.23
TAB 16-03, TABPG 6.3, 6.24
TAB 17-03, TABPG 6.3, 6.25
TAB 18-03, TABPG 6.3, 6.26
TAB 19-03, TABPG 6.3, 6.27
TAB 20-03, TABPG 6.3, 6.28
TAB 2-03, TABPG 6.1, 6.6
TAB 3-03, TABPG 6.1, 6.7
TAB 5-03, TABPG 6.1, 6.9
TAB 6-03, TABPG 6.1, 6.10
TAB 8-03, TABPG 6.2, 6.13, 6.14
TAB 9A-03, TABPG 6.15
TAB 9A-03, TAB 9B-03 AND TAB 9C-03),
TABPG 6.2
TAB 9B-03, TABPG 6.16
TAB 9C-03, TABPG 6.17
TAB Technical/TEAM, TAB 1.1
TAB technician, TAB 2.25
TAB/ATC relationship, TAB 2.25
Table

Table Driven Process, RNDC 1.2, 1.3
Tables and charts, APP 14.1; IDC 96; LTM A.1, A.7, A.15; RCDC 7.1
air volume, IDC 105
area/circumference of circles, IDC 84, 100
bolting for flange connections, RCDC 7.62
circular equivalents of rectangular duct, IDC 110
density chart, IDC 115
duct design, APP 14.1; RCSI 18.1
duct section properties, RCDC 7.61
duct stiffeners, RCDC 7.37
elbow weight 1.5 CLR, IDC 102
elbow weight 2.0 CLR, IDC 103
elbow weight 2.5 CLR, IDC 104
engineering conversion factors, IDC 113
entrance loss, IDC 107
fixed corners, RCDC 7.37
friction charts, IDC 108, 109
hinged corners, RCDC 7.46
hole gage for flange connections, RCDC 7.62
hydronic, APP 14.23
material thickness, RCDC 7.61
metric equivalents, IDC 111
specific heat/weight, IDC 116
steel structural shapes, IDC 99
stiffener/reinforcing data, RCDC 7.56
support spacing, RCDC 7.59

APP HVAC Systems – Applications
ASMM Architectural Sheet Metal Manual
BSAR Building Systems Analysis & Retrofit Manual
COM HVAC Systems Commissioning Manual
DCS HVAC Duct Construction Standards Metal and Flexible
DD HVAC Systems Duct Design
DEHG Ducted Electric Heat Guide for Air Handling Systems
ESAM Energy Systems Analysis and Management
FGDC Fibrous Glass Duct Construction Standards
FRP Thermoset FRP Duct Construction Manual
FSDG Fire Smoke and Radiation Damper Guide for HVAC Systems
FSE Food Service Equipment Fabrication and Installation Guidelines
GSSC Guide for Steel Stack Construction
IAQ Indoor Air Quality – A Systems Approach
IDC Accepted Industry Practice for Industrial Duct Construction
KVS Kitchen Ventilation Systems and Guidelines
LAG Accepted Industry Practices for Sheet Metal Lagging
LTM HVAC Air Duct Leakage Test Manual
MGW The Manager’s Guide for Welding
OBUC IAOQ Guidelines for Occupied Buildings Under Construction
PVC Thermoplastic Duct (PVC) Construction Manual
RCDC Rectangular Industrial Duct Construction Standards
RCSI Residential Comfort Systems Installation Standards
RNDC Round Industrial Duct Construction Standards
RSMG Residential Sheet Metal Guidelines
SEIS Seismic Restraint Manual – Guidelines for Mechanical Systems
TAB HVAC Systems Testing Adjusting and Balancing
TABPG TAB Procedural Guide
surface formulas, IDC 118
temperature charts, IDC 115
triangle solution, IDC 119
velocity pressure, IDC 106
volume formulas, IDC 118
weight of black iron pipe, IDC 101
weight of steel angles, IDC 97
weight of steel plate, IDC 98
weights and measures (U.S.), IDC 112
welding symbols, IDC 120
wind conversion, RCDC 7.62

Tachometer, TAB 11.12
Tack weld, FRP 4.4
Take-Off, FGDC 4.5
Tanks (shells and heads), LAG 3.7
Tapes, DCS 1.11; FGDC 3.3
Technical manuals, APP 1.8
Techniques, BSAR 1.8, 2.24, 3.12, 4.4, 5.6, 6.4, 7.7, 8.16
Tee, DCS 2.7, 3.11; FGDC 4.5
Temperature, APP 1.5; FGDC 2.1; IAQ 2.1, 3.8; TAB 13.12; TABPG 3.12
 joist, FSDG C.2
 limits, RNDC 3.2, 3.3, 3.4, 3.5, 3.8, 3.9, 3.12, 3.13, 7.28, 7.29, 7.30, 11.5, 12.3, 12.34, 12.59, 12.61, 12.83
 mixed air, APP 3.22
 refrigerant, APP 12.1
 sensing elements, APP 3.9
 setback controls, APP 3.37
 surface, FSDG C.2
 temperature, body range, IAQ 2.1
Tenant, BSAR 2.11; IAQ 12.1
Tenanted spaces, IAQ 1.5
Tensile elongation, FRP 2.2
Tension zone, SEIS 2.1
Terminal
 bypass VAV, APP 7.16
 unit(s)
 dual duct, APP 5.4
 proportional flow, APP 7.15
Terminal balance, TAB 13.5; TABPG 3.5
Terminal box, TAB 6.1
Terminal devices, TAB 12.7; TABPG 2.7
Terminal Heating and Cooling Units, TAB 8.14
Terminal reheat
 control systems, APP 6.4
 system design, APP 6.3
 system operation, APP 6.2
 system(s), APP 6.1; ESAM 2.6, 2.9; TAB 7.4, 7.5
 units, APP 6.3
Terminal unit ductwork, TAB 7.11
Terminal units, TAB 8.14, 14.1; TABPG 4.1
Termination Methods, FGDC 5.1
Terminology, FRP 1.2, 7.1; FSDG 2.1; FSE 1.1
Termite shield, ASMM 4.153
Terms, MGW 11.1
Terms and components, TAB 10.2
Terne, RSMG C.11
Test apparatus, LTM 5.1
 flange taps, LTM 5.2
 precautions, LTM 5.7
 vena contracta taps, LTM 5.3
Test holes, TAB 12.7; TABPG 2.7
Test openings, IDC 60, 63
 sampling, IDC 60, 63
 static pressure, IDC 60
 velocity pressure, IDC 60
Test port, LAG 3.43
Test pressure determination, LTM A.5
Test procedures, See Leakage testing; LTM 3.1
Test report(s), ASMM 9.14; LTM 6.1
 example, LTM 6.2
 procedure, LTM 6.1
Testing, BSAR 3.1, 7.5; FGDC 2.1; MGW 10.2
 clean room, APP 9.13
Testing Adjusting and Balancing (TAB), DD 4.7, 10.1
 provisions, DD 4.7, 10.1
Testing Adjusting and Balancing Bureau (TABB), TAB 1.2
Testing and balancing, COM 2.2, 4.1, 7.2, 9.2-9.5
Thermal
 capacity, cooling tower, APP 12.15
 expansion, RNDC 4.2, 4.9, 5.11, 6.1, 7.2, 7.13, 7.18, 7.19, 7.25, 7.26, 15.27, 16.8, B.9, B.10
 expansion valve, APP 12.4
 fluids, APP 10.30
 performance of a cooling tower, APP 12.14
Thermal bulbs, TAB 10.3, 10.4, 10.5
Thermal comfort, IAQ 3.2
Thermal expansion, SEIS 3.1, 3.3, B.1
 valve, TAB 10.3
Thermal transfer fluids, ESAM 17.11, 18.14, 18.16, 18.17, 18.18, 19.2, 19.3, 19.4
Thermocouple, TAB 4.6
Thermocouple thermometers, TAB 11.18
Thermodynamics, TAB 2.1
Thermohygrometer, TAB 11.21
Thermometers, APP 10.17; TAB 9.6
 glass tube, TAB 11.16
Thermoplastics, FRP 1.1, 2.1, 7.7, B.1, D.6, E.2; PVC vii
Thermoset plastics, FRP 1.1, 1.5, D.6, E.1; PVC vii
Thermosiphon system, ESAM 18.13
Thermostat, APP 3.10, 3.11; DEHG 6.1
 diffuser mounted, APP 3.36
 dual room, APP 3.10
 heating-cooling, APP 3.11
multiple, APP 3.37
multistage, APP 3.11
operation, APP 3.19
return air, APP 3.36
submaster, APP 3.11
summer-winter, APP 3.11
wall-mounted, APP 3.36
wet bulb, APP 3.11
Thixed, FRP 2.2
Thixotropes, FRP 2.4
Three-phase circuits, TAB 3.3
voltages, TAB 3.3
Three-pipe systems, APP 8.8, 10.20; ESAM 2.7, 4.3, 4.4, 22.2; TAB 9.3
Three-Way Control Valve, TABPG 5.7
Three-way valve, APP 3.17, 10.23; TAB 15.7
control, APP 3.31
diverting, APP 3.12, 3.17
mixing, APP 3.12, 3.17
Three-wire circuit, TAB 3.3
Threshold limit values, See TLV
Throttling range, APP 3.3, 3.18, 3.19
Throttling ratio (turndown), APP 7.26
Through-the-wall units, APP 11.1
Throw distance, DD 3.3
Tie rod, DCS 1.40
at joints, DCS 1.42
attachments, DCS 1.42
installation, DCS 1.27
requirements, DCS 1.27
TIG, See Gas arc welding tungsten; MGW 2.5
Tile, ASMM 6.5
Time
cycle, BSAR 1.5
estimates, BSAR 2.8
management, BSAR 1.3
Time proportional mode, APP 3.34
Time switches, program, APP 3.15
Timed two-position action, APP 3.3
Timers, APP 3.14
internal, APP 3.15
percentage cycle repeater, APP 3.15
seven day, APP 3.15
Tip speed, TAB 5.13
Titanium, MGW 2.23
T-method, DD 4.4
Tolerances, FRP 4.1
Toluene, IAQ 3.10
Tonal (sound), DD 11.7
Tools, BSAR 1.12
Torches, See Equipment
Total pressure method, DD 4.4
Total quality management, COM 2.1, 5.1
Tower
cooling, APP 2.9
nonmechanical draft, APP 12.16
Tower conditions, TAB 15.6; TABPG 5.6
Tower water flow, TAB 15.7; TABPG 5.7
Tracking forms, IAQ A.1, A.1
Trade show, BSAR 1.12
Trailing edges, DD 5.15
Training
importance, MGW 9.2
NTF, MGW 9.3
programs, MGW 6.3
qualification, MGW 9.3
requalification, MGW 9.3
resources, MGW 9.2
Transducers, APP 3.10
Transfer
globular, MGW 2.8
pulsed spray, MGW 2.8
short circuit, MGW 2.8
spray, MGW 2.8
Transfer air, KVS 1.3
Transferred, MGW 2.12
Transformers, TAB 3.5
Transition
One-Way, FGDC 4.1
Two-Way, FGDC 4.2
Transition(s), DCS 2.10
Transitions, FGDC 5.16

<table>
<thead>
<tr>
<th>APP</th>
<th>HVAC Systems – Applications Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMM</td>
<td>Architectural Sheet Metal Manual</td>
</tr>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design</td>
</tr>
<tr>
<td>DEHG</td>
<td>Ducted Electric Heat Guide for Air Handling Systems</td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
</tr>
<tr>
<td>FRP</td>
<td>Thermoset FRP Duct Construction Manual</td>
</tr>
<tr>
<td>FSDG</td>
<td>Fire Smoke and Radiation Damper Guide for HVAC Systems</td>
</tr>
<tr>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
</tr>
<tr>
<td>GSSC</td>
<td>Guide for Steel Stack Construction</td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality – A Systems Approach</td>
</tr>
<tr>
<td>IDC</td>
<td>Accepted Industry Practice for Industrial Duct Construction</td>
</tr>
<tr>
<td>KVS</td>
<td>Kitchen Ventilation Systems and Guidelines</td>
</tr>
<tr>
<td>LAG</td>
<td>Accepted Industry Practices for Sheet Metal Laying</td>
</tr>
<tr>
<td>LTM</td>
<td>HVAC Air Duct Leakage Test Manual</td>
</tr>
<tr>
<td>MGW</td>
<td>The Manager’s Guide for Welding</td>
</tr>
<tr>
<td>OBUC</td>
<td>IAQ Guidelines for Occupied Buildings Under Construction</td>
</tr>
<tr>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
</tr>
<tr>
<td>RCDC</td>
<td>Rectangular Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RCSI</td>
<td>Residential Comfort Systems Installation Standards</td>
</tr>
<tr>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines</td>
</tr>
<tr>
<td>SEIS</td>
<td>Seismic Restraint Manual – Guidelines for Mechanical Systems</td>
</tr>
<tr>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing</td>
</tr>
<tr>
<td>TABPG</td>
<td>TAB Procedural Guide</td>
</tr>
</tbody>
</table>
Translucent, FRP 2.4
Transmission heat gains, TAB 2.6
Transverse bracing, SEIS 3.2
Transverse joint(s), DCS 1.13; PVC 18, 23, 34
 bell and spigot, PVC 18, 34
 butt joint, PVC 18, 23, 34
 profiles, DCS 1.35
 reinforcement, DCS 1.13, 1.24
 sleeve joint, PVC 3, 18, 23
 special profiles, DCS 1.39
 specification, DCS 1.34
Tranverse locations, TAB 13.7; TABPG 3.7
Trapeze angle loads, DCS 4.10
Trapeze load diagram, DCS 4.12
Trapeze type supports, RNDC 13.24, 13.25
Tray, FSE 7.3
Trichloroethane, IAQ 3.10
Troubleshooting, MGW 7.5; TAB 9.8
True variable air volume (VAV) system, APP 7.2
Tubaxial fans, TAB 5.2
Tubular centrifugal fans, TAB 5.3
Tungsten inert gas, See Gas arc welding tungsten
Tungsten pointers, MGW 2.7
Turbulent flow, TAB 2.23
Turndown (shutoff), TAB 14.8; TABPG 4.8
Turning vanes, DD 5.15, 6.4
 installation, DD 5.17
 missing, DD 5.15
 research, DD 5.16
TV, BSAR 1.9, 1.14
TVOC, IAQ 4.2
Two-fan systems, APP 2.27
Two-pipe system(s), APP 8.7, 10.19; TAB 9.3
Two-pipe vacuum steam system, TAB 9.16
Two-position, TAB 4.6
 action, APP 3.2
 control, APP 3.10
 dampers, APP 3.7
 devices, APP 3.18
 operation, APP 3.4
 relays, APP 3.14
Two-way valves, APP 10.24; TAB 4.3
Type I hood, KVS 2.1
Type II hood, KVS 2.1, 2.4
Type II non-grease ducts, KVS 3.1
Types of controls, TAB 4.1
Typical connections, TAB 9.18
Typical system, KVS 1.2

U Value, TAB 2.4
U.S. units
 air density correction factors, APP 14.19
 electric equations, APP 14.19
 hydronic equations, APP 14.17
 hydronic equivalents, APP 14.15
 pump equations, APP 14.15
UFFI, IAQ E.2
UL, FSDG 3.1, R.3; KVS 2.13
UL 181, FGDC 3.3
UL 555, FSDG 3.4, 5.4, 5.5
UL Standard 555S, FSDG 3.4
UL Standard 710, KVS 5.2
UL Subject 762, KVS 4.1
Ultra low penetration air (ULPA) filters, APP 9.5
Underground ducts, RCSI 7.2
Underslab duct, DCS 3.21
 construction standards, DCS 3.21
 encasement anchors, DCS 3.23
 profiles, DCS 3.22
Underwriters Laboratories, KVS 1.4
Underwriters Laboratories of Canada, KVS 1.4
Unidirectional, APP 3.12
Uniform Building Code, FSDG 3.1
Uniform velocity profiles, DD 6.3
Unit balancing, TAB 15.4; TABPG 5.4
Unit heaters, APP 10.3; TAB 8.14
Unit ventilators, APP 10.3; TAB 8.14
Unit, terminal reheat, APP 6.3
Unitary
 equipment, APP 11.3
 heat pumps (air-to-air), APP 11.5
 systems, APP 2.1, 11.1
Units, RNDC 1.4, 3.3, 3.4, 8.2, 8.3, 9.3, 10.2, 10.3,
 11.3, 11.7, 11.30, 11.42, 12.1, 12.59, 15.9, 15.17,
 17.2, 17.8, 17.11, 17.12
Units of measurement, TAB 2.1
Unlined
 rectangular duct, DD 11.33
 round ducts, DD 11.35
Unreinforced duct, DCS 1.15, 1.73
 schedule, DCS 1.62, 1.69
 wall thickness, DCS 1.69
Unstiffened Solutions, RNDC 4.2, 6.3, 7.3, 8.4,
 8.54, 8.55, 9.4, 9.34, 9.35, 10.4, 10.34, 11.8, 11.31,
 11.43, 12.5, 17.7, 17.16
Upstream, See Heater location
Upstream turbulence, DD 11.18
Use of tables and charts, DD 9.1
Uses, FRP 1.1; LAG 1.1
Utilities, BSAR 8.1, 8.17, 8.18
Utility, KVS 4.2
 and access openings, KVS 4.2
 and motor covers, KVS 4.2
U-tube, TAB 11.9
UV (Ultraviolet), FRP 2.5, 3.1, D.6
UV Stabilizer, FRP 2.5
V belt drive, TAB 5.9
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design</td>
<td>IDC</td>
<td>Accepted Industry Practice for Industrial Duct Construction</td>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGW</td>
<td>The Manager's Guide for Welding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variable frequency AC motor speed controllers, APP 7.23
Variable pitch motor sheaves, APP 7.22
Variable pitch vane axial fans, APP 7.23
Variable volume flow, TAB 15.9
Hydronic systems, APP 10.24
Reheat system, APP 7.29
Systems, TAB 15.11
Systems and temperature, APP 7.32

Variable Volume Flow, TABPG 5.9
Variable Volume Systems, TABPG 5.11
Variable water flow, APP 3.30

VAV

Air volume requirements, APP 7.25
And perimeter air systems, APP 7.10
Applications, TAB 6.10
Box, APP 7.17
Control systems, APP 7.30
Fan air volume control, APP 7.18
Fan volume control, APP 7.20
Pressure dependency, APP 7.12
Reheat systems, APP 7.4
Static pressure control, APP 7.19
Supply air fan, APP 7.18
System, TAB 6.3

VAV boxes, TAB 14.8; TABPG 4.8
VAV system(s), APP 7.1, 7.27
Bypass or dump, APP 7.4
Bypass type, APP 7.2
categories, TAB 14.1
Characteristics, TAB 14.1
design, APP 7.24
dual duct, APP 7.5
features, APP 7.8
Induction, APP 7.7
Pressure independent, TAB 14.4, 14.6
Sealing, DCS 1.9
Shutoff, APP 2.29
True, APP 7.2
types, APP 7.2
VAV Systems
CATEGORIES, TABPG 4.1
CHARACTERISTICS, TABPG 4.1
Pressure Independent, TABPG 4.4, 4.6
Typical, TABPG 4.1

VAV terminal unit
- Fan powered, APP 7.14
- Independent pressure, APP 7.27
- Induction, APP 7.16
- Operation, APP 7.11
- Types of, APP 7.12

V - blade, TAB 6.14

Vegetation, IAQ 4.1

Velocity, See Heater selection; DEHG 3.1; FGDC 2.1; TAB 2.20
- Classification, DD 4.5
- Exhaust air systems, APP 9.23
- Head, TAB 8.4
- Minimum, DEHG 3.1
- Profile(s), DD 6.3; TAB 2.20
- Reduction method, DD 4.4
- Total pressure, DD 4.4
- Uniform, DD 6.3

Vent connectors, RCSI 10.2
- Clearance, RCSI 10.2

Vent terminal, RCSI 10.4

Ventilating ceilings, DD 3.11

Ventilation, BSAR 6.3, 7.2; COM 3.3, 7.1, 9.4, 9.5; ESAM 1.7, 1.8, 2.1, 2.2, 2.5, 2.6, 2.8, 2.10, 3.1, 4.1, 4.5, 5.8, 5.14, 8.7, 9.1, 9.3, 10.2, 10.6, 10.8, 14.1, 14.2, 16.21, 17.1, 17.10, 18.5, 18.8, 22.4; IAQ 1.1, 1.2, 1.3, 3.1, 3.10, 4.2, 6.12, 7.1, 11.4
- Air, RCSI 2.7; TAB 4.6
- Air, outdoor, APP 2.21
- Breathing zone, See BZV
- Carbon dioxide calculation, IAQ 10.3
- Concepts, KVS 1.2
- Dryer, RCSI 10.3
- Indicator, IAQ 10.3
- Issues, IAQ 3.7
- MakeBup air, RCSI 10.5
- Outside air rate, IAQ 7.1
- Size, RCSI 10.1
- Systems, TAB 13.8

Ventilators, FRP 7.7, 9.8
- Design, ASMM 8.1
- Gooseneck, ASMM 8.1; DCS 5.8
- Gravity, DCS 5.9
- Rotation, ASMM 8.292
- Stationary, ASMM 8.295

Venting, RCSI 10.1; TAB 9.5
- Dryer, RCSI 10.6
- Size, RCSI 10.1

Venturi Tube, TAB 11.24

Vernier control mode, APP 3.34

Vertical loads, SEIS 1.1

Vertical risers, SEIS 3.3, B.1

Vertical support system, SEIS 3.1

Vibration, APP 2.7; BSAR 2.21

Vibration testing, DCS 7.12
- Cross breaking, DCS 7.15
- Equipment, DCS 7.12, 7.14
- Fatigue, DCS 7.15
- Objectives, DCS 7.12
- Oscillograph traces, DCS 7.16
- Results, DCS 7.13, 7.17
- Threshold velocity, DCS 7.13

Viscosity, FRP 2.2, 8.2, D.2

Viscous impingement filters, APP 2.14

VOC, IAQ 3.8, 10.1, 10.11

VOCs, compounds, IAQ 3.8

Volatile organic compounds (VOCs), KVS 4.1; OBUC 2.2

Voltage, MGW 3.2

Volt-ammeter, TAB 11.22

Volume control, TAB 6.3

Volume dampers, FRP 7.6, 9.6; PVC 41; TAB 6.5

Vortex, TAB 8.6, 12.7; TABPG 2.7

VVT systems, APP 7.32

Warm-up cycles, APP 7.29

Warm-up/cool-down, control cycle, APP 3.22
Washer, FGDC 5.16
Washing and scrubbing, APP 2.21
Waste heat, pump, APP 11.13
Water, IAQ 10.1
 chilled, BSAR 2.16
 cooled condensers, APP 12.7
 domestic, BSAR 2.15
 flow sensing elements, APP 3.9
 heat source, APP 11.13
 hot, BSAR 2.16
 piping, APP 14.23
 spray humidifiers, APP 3.27
Water, Flow-Pressure Drop, TAB 9.10
Water chillers, TAB 8.13
Water diverter, ASMM 1.51; RSMG 1.17, 1.18
Water flow, TAB 15.8; TABPG 5.8
Water system
 dual temperature, APP 10.18
 low temperature, APP 10.18
 medium temperature, APP 10.18
Water, Vapor, TAB 2.6
Water-cooled condenser, APP 12.7
Waterstops, RSMG 5.6
Water-to-steam heat exchangers, APP 10.12
Water-to-water, heat exchangers, APP 10.12
Water-to-water, heat pump, APP 11.13
Water-wash assemblies, KVS 2.13
Watt density, DEHG 3.2
Wax, IAQ 4.1
Wearing rings, TAB 8.3
Weatherability, FRP 2.2
Weather-protected openings, KVS 3.2
Weight, LAG 2.20
 aluminum duct, RNDC 13.82-13.85
 round duct, DCS A.10
 steel duct, RNDC 13.54-13.81, W
 eight per square foot of sheet metals, galvanized
 steel, DCS A.8
Weld joints, See Welding positions, See Welding symbols
Weld strength, MGW 5.4

Welders
 hiring, MGW 10.2
 seam, MGW 3.8
Welding, SEIS 3.2, B.1
 amperage, MGW 3.3
 copper, MGW 2.3, 3.5
 current, MGW 6.3
 distortion, MGW 5.2
 inspection, MGW 7.3
 jiggling, MGW 5.2
 machine, MGW 3.6
 performance, MGW 6.3
 productivity, MGW 6.3
 qualification, MGW 6.3
 quality, MGW 6.2, 7.2
 repeatability, MGW 6.2
 specification, MGW 6.7
 stick, MGW 2.4
 terms, MGW 11.1
 test, MGW 6.9, 10.2
 types, MGW 5.2
 variables, MGW 6.3
Welding equipment, MGW 3.2
 cable(s), MGW 3.4
 wire, MGW 2.7
Welding position(s), MGW 5.3, 5.10, 6.3
Welding procedure(s), MGW 6.3, 6.5; RNDC iii
Welding stiffeners (Reinforcements), RNDC 4.7, 5.8, 12.21, 12.22, 12.23, 12.26
Welding symbols, IDC 120; MGW 5.2; RNDC 1.4, 14.1, 14.13, 14.14, 14.15, 14.16, 14.17
Welds
 thermostat, APP 3.11
Wet bulb, TAB 2.8
 temperature, TAB 2.10
Wet coil conditions, TAB 13.6; TABPG 3.6
What is FRP, FRP 1.1
Wheels, KVS 8.3
Wind conversion table, RCDC 7.62
Wind currents, KVS 5.5
Wind effect, DD 5.6

<table>
<thead>
<tr>
<th>APP</th>
<th>HVAC Systems – Applications Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASMM</td>
<td>Architectural Sheet Metal Manual</td>
</tr>
<tr>
<td>BSAR</td>
<td>Building Systems Analysis & Retrofit Manual</td>
</tr>
<tr>
<td>COM</td>
<td>HVAC Systems Commissioning Manual</td>
</tr>
<tr>
<td>DCS</td>
<td>HVAC Duct Construction Standards Metal and Flexible</td>
</tr>
<tr>
<td>DD</td>
<td>HVAC Systems Duct Design</td>
</tr>
<tr>
<td>DEHG</td>
<td>Ducted Electric Heat Guide for Air Handling Systems</td>
</tr>
<tr>
<td>ESAM</td>
<td>Energy Systems Analysis and Management</td>
</tr>
<tr>
<td>FGDC</td>
<td>Fibrous Glass Duct Construction Standards</td>
</tr>
<tr>
<td>FRP</td>
<td>Thermoset FRP Duct Construction Manual</td>
</tr>
<tr>
<td>FSDG</td>
<td>Fire Smoke and Radiation Damper Guide for HVAC Systems</td>
</tr>
<tr>
<td>FSE</td>
<td>Food Service Equipment Fabrication and Installation Guidelines</td>
</tr>
<tr>
<td>GSSC</td>
<td>Guide for Steel Stack Construction Indoor Air Quality – A Systems Approach</td>
</tr>
<tr>
<td>IAQ</td>
<td>Accepted Industry Practice for Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>IDC</td>
<td>Kitchen Ventilation Systems and Guidelines</td>
</tr>
<tr>
<td>KVS</td>
<td>Accepted Industry Practices for Sheet Metal Lagging</td>
</tr>
<tr>
<td>LAG</td>
<td>HVAC Air Duct Leakage Test Manual</td>
</tr>
<tr>
<td>LTM</td>
<td>The Manager's Guide for Welding</td>
</tr>
<tr>
<td>MGW</td>
<td>OBUC</td>
</tr>
<tr>
<td>PVC</td>
<td>Thermoplastic Duct (PVC) Construction Manual</td>
</tr>
<tr>
<td>RCDC</td>
<td>Rectangular Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RCSI</td>
<td>Residential Comfort Systems Installation Standards</td>
</tr>
<tr>
<td>RNDC</td>
<td>Round Industrial Duct Construction Standards</td>
</tr>
<tr>
<td>RSMG</td>
<td>Residential Sheet Metal Guidelines</td>
</tr>
<tr>
<td>SEIS</td>
<td>Seismic Restraint Manual – Guidelines for Mechanical Systems</td>
</tr>
<tr>
<td>TAB</td>
<td>HVAC Systems Testing Adjusting and Balancing</td>
</tr>
<tr>
<td>TABPG</td>
<td>TAB Procedural Guide</td>
</tr>
</tbody>
</table>
Wind Load, RNDC iii, 4.1, 4.3, 4.4, 4.6, 4.9, 4.11, 5.1, 5.2, 5.3, 5.6, 6.1, 6.6, 7.1, 7.4, 7.5, 7.9, 7.16, 7.23, 7.27, 7.29, 7.33, 17.10
Wind loading, LAG 2.12
Window(s), ASMM 6.45; RSMG 4.1, 4.2, 4.3, 4.5
Wire, FGDC 5.1
surface temperature, DEHG 1.1
Working tests, TAB 14.17; TABPG 4.17
Worksheet, duct sizing, DD 7.24, 8.24
World Health Organization, IAQ 1.1
Woven ring, FRP 2.5, 3.1, 5.11, 7.1, 7.7, D.2, D.3, D.7
Wrapping systems, KVS 3.3

Y

Yellow pages, BSAR 1.15

Z

Z-Clip, LAG 2.4
Zero flow readings, TAB 15.3; TABPG 5.3
Z-Girt, LAG 2.4
Zinc coating thickness and weight, DCS A.2
Zone balancing, TAB 13.5; TABPG 3.5
Zone control, APP 3.29
hydronic, APP 3.33
Zone heating-cooling coordination, APP 3.29
Zone record, IAQ A.4
Zoned smoke control, APP 9.41; FSDG 2.2
Zoning, APP 3.1; DD 4.2

Yield Strength, RNDC 3.2, 3.3, 3.4, 3.5, 4.2, 4.3, 7.2, 7.3, 12.34, 12.52, 12.55, 12.59, 12.60, 12.61, 13.29, 14.2, 17.8, 17.9, 17.12, 17.13
Yield Strength Reduction Factor, RNDC 3.8, 3.11, 4.1, 6.1, 7.2